{"title":"The Blossoming of Ultrasonic Metatransducers","authors":"Luca De Marchi","doi":"10.1109/TUFFC.2024.3420158","DOIUrl":null,"url":null,"abstract":"Key requirements to boost the applicability of ultrasonic systems for in situ, real-time operations are low hardware complexity and low power consumption. These features are not available in present-day systems due to the fact that US inspections are typically achieved through phased arrays featuring a large number of individually controlled piezoelectric transducers and generating huge quantities of data. To minimize the energy and computational requirements, novel devices that feature enhanced functionalities beyond the mere conversion (i.e., metatransducers) can be conceived. This article reviews the potential of recent research breakthroughs in the transducer technology, which allow them to efficiently perform tasks, such as focusing, energy harvesting, beamforming, data communication, or mode filtering, and discusses the challenges for the widespread adoption of these solutions.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1097-1105"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10574853","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10574853/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Key requirements to boost the applicability of ultrasonic systems for in situ, real-time operations are low hardware complexity and low power consumption. These features are not available in present-day systems due to the fact that US inspections are typically achieved through phased arrays featuring a large number of individually controlled piezoelectric transducers and generating huge quantities of data. To minimize the energy and computational requirements, novel devices that feature enhanced functionalities beyond the mere conversion (i.e., metatransducers) can be conceived. This article reviews the potential of recent research breakthroughs in the transducer technology, which allow them to efficiently perform tasks, such as focusing, energy harvesting, beamforming, data communication, or mode filtering, and discusses the challenges for the widespread adoption of these solutions.
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.