Inborn errors of the malate aspartate shuttle – Update on patients and cellular models

IF 3.7 2区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Molecular genetics and metabolism Pub Date : 2024-06-24 DOI:10.1016/j.ymgme.2024.108520
Jasmine Koch , Melissa H. Broeks , Matthias Gautschi , Judith Jans , Alexander Laemmle
{"title":"Inborn errors of the malate aspartate shuttle – Update on patients and cellular models","authors":"Jasmine Koch ,&nbsp;Melissa H. Broeks ,&nbsp;Matthias Gautschi ,&nbsp;Judith Jans ,&nbsp;Alexander Laemmle","doi":"10.1016/j.ymgme.2024.108520","DOIUrl":null,"url":null,"abstract":"<div><p>The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents – electrons – into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate.</p><p>Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy.</p><p>This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.</p></div>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096719224004049/pdfft?md5=2f2e36ba23f058d74cf5e0c9f9daee29&pid=1-s2.0-S1096719224004049-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096719224004049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents – electrons – into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate.

Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy.

This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先天性苹果酸天冬氨酸梭状芽孢杆菌错误--患者和细胞模型的最新情况。
苹果酸天门冬氨酸穿梭器(MAS)在将细胞膜还原等价物--电子--运送到线粒体,以便在电子传递链(ETC)和氧化磷酸化过程中进行能量转换方面发挥着关键作用。MAS 由两对细胞膜和线粒体同工酶(苹果酸脱氢酶 1 和 2;谷氨酸草酰乙酸转氨酶 1 和 2)和两个转运体(苹果酸-2-氧代谷氨酸载体和天冬氨酸谷氨酸载体(AGC),后者有两个依赖于组织的同工酶 AGC1 和 AGC2)组成。虽然线粒体内膜对 NADH 没有渗透性,但 MAS 通过促进苹果酸的吸收,形成了线粒体电子吸收的主要途径之一。迄今为止,已描述了 MAS 七种成分中五种成分的遗传性双等位基因致病变异,这些变异可导致多种症状,包括早发性癫痫性脑病。本综述概述了已报道的 MAS 缺陷患者。此外,我们还概述了诊断程序以及对源自患者的细胞模型和组织进行的研究。本文简要讨论了当前的细胞模型,并重点介绍了更好地了解 MAS 缺陷的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular genetics and metabolism
Molecular genetics and metabolism 生物-生化与分子生物学
CiteScore
5.90
自引率
7.90%
发文量
621
审稿时长
34 days
期刊介绍: Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.
期刊最新文献
Sensitivity of transferrin isoform analysis for PMM2-CDG Assessing carnosinase 1 activity for diagnosing congenital disorders of glycosylation Treatment of congenital disorders of glycosylation: An overview CIC variants and folinic acid-responsive seizures Characterisation of infantile cardiomyopathy in Alström syndrome using ALMS1 knockout induced pluripotent stem cell derived cardiomyocyte model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1