lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation.

IF 4.1 2区 医学 Q2 CELL BIOLOGY Molecular Cancer Research Pub Date : 2024-11-01 DOI:10.1158/1541-7786.MCR-23-0334
Hongyan Huang, Haiyun Jin, Rong Lei, Zhanghai He, Shishi He, Jiewen Chen, Phei E Saw, Zhu Qiu, Guosheng Ren, Yan Nie
{"title":"lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation.","authors":"Hongyan Huang, Haiyun Jin, Rong Lei, Zhanghai He, Shishi He, Jiewen Chen, Phei E Saw, Zhu Qiu, Guosheng Ren, Yan Nie","doi":"10.1158/1541-7786.MCR-23-0334","DOIUrl":null,"url":null,"abstract":"<p><p>Because of its insensitivity to existing radiotherapy, namely, chemotherapy and targeted treatments, triple-negative breast cancer (TNBC) remains a great challenge to overcome. Increasing evidence has indicated abnormal Wnt/β-catenin pathway activation in TNBC but not luminal or HER2+ breast cancer, and lncRNAs play a key role in a variety of cancers. Through lncRNA microarray profiling between activated and inactivated Wnt/β-catenin pathway of TNBC tissues, lnc-WAL (Wnt/β-catenin-associated lncRNA; WAL) was selected as the top upregulated lncRNA in Wnt/β-catenin pathway activation compared with the inactivation group. RNA immunoprecipitation sequencing was used to compare the β-catenin and IgG groups, in which lnc-WAL could interact with β-catenin. Clinically, increased lnc-WAL in TNBC tumor tissue was associated with shorter survival. lnc-WAL promoted epithelial-mesenchymal transition, the proliferation, migration, and invasion of breast cancer stem cells and TNBC cells. Mechanistically, lnc-WAL inhibited β-catenin protein degradation via AXIN-mediated phosphorylation at serine 45. Subsequently, β-catenin accumulated in the nucleus and activated the target genes. Importantly, Wnt/β-catenin pathway activation stimulated the transcription of lnc-WAL. These results pointed to a master regulatory role of lnc-WAL/AXIN/β-catenin in the malignant progression of TNBC. Our findings provide important clinical translational evidence that lnc-WAL may be a potential therapeutic target against TNBC. Implications: The positive feedback between lnc-WAL and the Wnt/β-catenin pathway promotes TNBC progression, and lnc-WAL could be a potential prognostic marker for patients with TNBC.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"1036-1050"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Because of its insensitivity to existing radiotherapy, namely, chemotherapy and targeted treatments, triple-negative breast cancer (TNBC) remains a great challenge to overcome. Increasing evidence has indicated abnormal Wnt/β-catenin pathway activation in TNBC but not luminal or HER2+ breast cancer, and lncRNAs play a key role in a variety of cancers. Through lncRNA microarray profiling between activated and inactivated Wnt/β-catenin pathway of TNBC tissues, lnc-WAL (Wnt/β-catenin-associated lncRNA; WAL) was selected as the top upregulated lncRNA in Wnt/β-catenin pathway activation compared with the inactivation group. RNA immunoprecipitation sequencing was used to compare the β-catenin and IgG groups, in which lnc-WAL could interact with β-catenin. Clinically, increased lnc-WAL in TNBC tumor tissue was associated with shorter survival. lnc-WAL promoted epithelial-mesenchymal transition, the proliferation, migration, and invasion of breast cancer stem cells and TNBC cells. Mechanistically, lnc-WAL inhibited β-catenin protein degradation via AXIN-mediated phosphorylation at serine 45. Subsequently, β-catenin accumulated in the nucleus and activated the target genes. Importantly, Wnt/β-catenin pathway activation stimulated the transcription of lnc-WAL. These results pointed to a master regulatory role of lnc-WAL/AXIN/β-catenin in the malignant progression of TNBC. Our findings provide important clinical translational evidence that lnc-WAL may be a potential therapeutic target against TNBC. Implications: The positive feedback between lnc-WAL and the Wnt/β-catenin pathway promotes TNBC progression, and lnc-WAL could be a potential prognostic marker for patients with TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
lncRNA-WAL通过诱导β-catenin核易位促进三阴性乳腺癌的侵袭。
由于三阴性乳腺癌(TNBC)对现有的放疗、化疗和靶向治疗不敏感,因此仍然是一个需要攻克的巨大挑战。越来越多的证据表明,Wnt/β-catenin通路在TNBC中异常激活,而在管腔癌或HER2+乳腺癌中则没有。通过对TNBC组织中激活和失活的wnt/β-catenin通路进行lncRNA微阵列分析,发现lnc-WAL(wnt/β-catenin相关lncRNA;WAL)是wnt/β-catenin通路激活组与失活组相比上调最多的lncRNA。RIP-seq用于比较β-catenin组和IgG组,其中lnc-WAL可与β-catenin相互作用。在临床上,TNBC肿瘤组织中lnc-WAL的增加与生存期缩短有关。lnc-WAL促进EMT、乳腺癌干细胞(BCSCs)和TNBC细胞的增殖、迁移和侵袭。从机理上讲,lnc-WAL通过Axin介导的丝氨酸45磷酸化抑制β-catenin蛋白降解。随后,β-catenin在细胞核中积累并激活靶基因。重要的是,wnt/β-catenin通路的激活刺激了lnc-WAL的转录。这些结果表明,lnc-WAL/Axin/β-catenin在TNBC的恶性进展中起着主调控作用。我们的研究结果提供了重要的临床转化证据,表明lnc-WAL可能是TNBC的潜在治疗靶点。意义:lnc-WAL与Wnt/β-catenin通路之间的正反馈促进了TNBC的进展,lnc-WAL可能是TNBC患者的潜在预后标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
期刊最新文献
Tumor-derived EBV-miR-BART2-5p promotes nasopharyngeal carcinoma metastasis by inducing pre-metastatic endothelial cell pyroptosis. TIPE inhibits ferroptosis in colorectal cancer cells by regulating MGST1/ALOX5. ASAP1 and ARF1 regulate myogenic differentiation in rhabdomyosarcoma by modulating TAZ activity. lncRNA-WAL Promotes Triple-Negative Breast Cancer Aggression by Inducing β-Catenin Nuclear Translocation. METTL14-Mediated Bim mRNA m6A Modification Augments Osimertinib Sensitivity in EGFR-Mutant NSCLC Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1