首页 > 最新文献

Molecular Cancer Research最新文献

英文 中文
Single-cell and spatial transcriptomics reveal a tumor-associated macrophage subpopulation that mediates prostate cancer progression and metastasis.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-19 DOI: 10.1158/1541-7786.MCR-24-0791
Shenglin Mei, Hanyu Zhang, Taghreed Hirz, Nathan Elias Jeffries, Yanxin Xu, Ninib Baryawno, Shulin Wu, Chin-Lee Wu, Akash Patnaik, Philip J Saylor, David B Sykes, Douglas M Dahl

Tumor-associated macrophages (TAMs) are a transcriptionally heterogeneous population, and their abundance and function in prostate cancer is poorly defined. We integrated parallel datasets from single-cell RNA-sequencing, spatial transcriptomics and multiplex immunofluorescence to reveal the dynamics of TAMs in primary and metastatic prostate cancer. Four TAM subpopulations were identified. Notably, one of these TAM subsets was defined by the co-expression of SPP1+ and TREM2+ and was significantly enriched in metastatic tumors. The SPP1+/TREM2+ TAMs were enriched in the metastatic tumor microenvironment in both human patient samples and murine models of prostate cancer. The abundance of these SPP1+/TREM2+ macrophages was associated with patient progression free survival. Spatially, TAMs within prostate cancer bone metastases were highly enriched within the tumor region, consistent with their pro-tumorigenic role. Blocking SPP1 in RM1 prostate cancer mouse model led to improved efficacy of anti-PD-1 treatment, and increased CD8 T cell infiltration in tumor. These findings suggest that targeting SPP1+ TAMs may offer a promising therapeutic strategy and potentially enhance the effects of immune checkpoint inhibition (ICI) in advanced prostate cancer. Implications: This study expands our understanding of the diverse roles of macrophage populations in prostate cancer metastases and highlights new therapeutic targets.

{"title":"Single-cell and spatial transcriptomics reveal a tumor-associated macrophage subpopulation that mediates prostate cancer progression and metastasis.","authors":"Shenglin Mei, Hanyu Zhang, Taghreed Hirz, Nathan Elias Jeffries, Yanxin Xu, Ninib Baryawno, Shulin Wu, Chin-Lee Wu, Akash Patnaik, Philip J Saylor, David B Sykes, Douglas M Dahl","doi":"10.1158/1541-7786.MCR-24-0791","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0791","url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are a transcriptionally heterogeneous population, and their abundance and function in prostate cancer is poorly defined. We integrated parallel datasets from single-cell RNA-sequencing, spatial transcriptomics and multiplex immunofluorescence to reveal the dynamics of TAMs in primary and metastatic prostate cancer. Four TAM subpopulations were identified. Notably, one of these TAM subsets was defined by the co-expression of SPP1+ and TREM2+ and was significantly enriched in metastatic tumors. The SPP1+/TREM2+ TAMs were enriched in the metastatic tumor microenvironment in both human patient samples and murine models of prostate cancer. The abundance of these SPP1+/TREM2+ macrophages was associated with patient progression free survival. Spatially, TAMs within prostate cancer bone metastases were highly enriched within the tumor region, consistent with their pro-tumorigenic role. Blocking SPP1 in RM1 prostate cancer mouse model led to improved efficacy of anti-PD-1 treatment, and increased CD8 T cell infiltration in tumor. These findings suggest that targeting SPP1+ TAMs may offer a promising therapeutic strategy and potentially enhance the effects of immune checkpoint inhibition (ICI) in advanced prostate cancer. Implications: This study expands our understanding of the diverse roles of macrophage populations in prostate cancer metastases and highlights new therapeutic targets.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143657868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1. Empty spiracles homeobox 2 (EMX2) 转录因子通过靶向 CADM1 在肾细胞癌中发挥肿瘤抑制因子的功能。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-17 DOI: 10.1158/1541-7786.MCR-24-0496
Zhibin Fu, Wenqi Chen, Di Gu, Juan Li, Kai Dong, Yuying Lan, Tao Liu, Bianhong Zhang, Lei Li, Ethan Lee, Chenghua Yang, Tao P Zhong, Linhui Wang

Renal cell carcinoma (RCC), a prevalent urinary system malignancy, often metastasizes at an early stage. Characterized by a complex pathogenesis and high mortality rate, RCC poses a significant clinical challenge. We evaluated the expression level of EMX2 in RCC patients and revealed a significant reduction of EMX2 expression, correlating with poor RCC patient prognosis. EMX2 functions as a tumor suppressor and inhibits RCC cell proliferation and migration, accompanied by programmed cell death. Implantation of EMX2-transduced RCC cells beneath the mouse kidney capsule or subcutaneous injection of transduced RCC cells results in a reduction in tumor growth and size. Through RNA-seq and chromatin immunoprecipitation sequencing analyses, we have identified Cell Adhesion Molecule 1 (CADM1) as a direct transcriptional target of EMX2's suppressive effects. CADM1 induction by EMX2 triggers PARP1-mediated parthanatos, a specific type of cell death due to mitochondrial oxidation reduction, in migrating RCC cells. Concurrently, EMX2-CADM1 upregulation instigates Caspase-3-dependent apoptosis in attached RCC cells. Furthermore, EMX2-CADM1 transcriptional axis also inhibits the PI3K-AKT pathway to impair RCC cell growth. Hence, the orchestrated effects mediated by EMX2-CADM1 axis promote RCC cell death and suppresse its growth and invasion, providing potential intervention strategies for combating RCC. Implications: The EMX2-CADM1 transcriptional axis offers a promising therapeutic target for inducing cell death and inhibiting growth and invasion in renal cell carcinoma, which could lead to more effective treatment strategies for this aggressive malignancy.

{"title":"Empty spiracles homeobox 2 (EMX2) transcription factor functions as a tumor suppressor in renal cell carcinoma by targeting CADM1.","authors":"Zhibin Fu, Wenqi Chen, Di Gu, Juan Li, Kai Dong, Yuying Lan, Tao Liu, Bianhong Zhang, Lei Li, Ethan Lee, Chenghua Yang, Tao P Zhong, Linhui Wang","doi":"10.1158/1541-7786.MCR-24-0496","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0496","url":null,"abstract":"<p><p>Renal cell carcinoma (RCC), a prevalent urinary system malignancy, often metastasizes at an early stage. Characterized by a complex pathogenesis and high mortality rate, RCC poses a significant clinical challenge. We evaluated the expression level of EMX2 in RCC patients and revealed a significant reduction of EMX2 expression, correlating with poor RCC patient prognosis. EMX2 functions as a tumor suppressor and inhibits RCC cell proliferation and migration, accompanied by programmed cell death. Implantation of EMX2-transduced RCC cells beneath the mouse kidney capsule or subcutaneous injection of transduced RCC cells results in a reduction in tumor growth and size. Through RNA-seq and chromatin immunoprecipitation sequencing analyses, we have identified Cell Adhesion Molecule 1 (CADM1) as a direct transcriptional target of EMX2's suppressive effects. CADM1 induction by EMX2 triggers PARP1-mediated parthanatos, a specific type of cell death due to mitochondrial oxidation reduction, in migrating RCC cells. Concurrently, EMX2-CADM1 upregulation instigates Caspase-3-dependent apoptosis in attached RCC cells. Furthermore, EMX2-CADM1 transcriptional axis also inhibits the PI3K-AKT pathway to impair RCC cell growth. Hence, the orchestrated effects mediated by EMX2-CADM1 axis promote RCC cell death and suppresse its growth and invasion, providing potential intervention strategies for combating RCC. Implications: The EMX2-CADM1 transcriptional axis offers a promising therapeutic target for inducing cell death and inhibiting growth and invasion in renal cell carcinoma, which could lead to more effective treatment strategies for this aggressive malignancy.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143648176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KSR2 promotes self-renewal and clonogenicity of small-cell lung carcinoma.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-10 DOI: 10.1158/1541-7786.MCR-24-0546
Dianna H Huisman, Deepan Chatterjee, Robert A Svoboda, Heidi M Vieira, Abbie S Ireland, Sydney Skupa, James W Askew, Danielle E Frodyma, Luc Girard, Kurt W Fisher, Michael S Kareta, John D Minna, Trudy G Oliver, Robert E Lewis

Small-cell lung carcinoma (SCLC) tumors are heterogeneous, with a subpopulation of cells primed for tumor initiation. Here, we show that Kinase Suppressor of Ras 2 (KSR2) promotes the self-renewal and clonogenicity of SCLC cells. KSR2 is a molecular scaffold that promotes Raf/MEK/ERK signaling. KSR2 is preferentially expressed in the ASCL1 subtype of SCLC (SCLC-A) tumors and is expressed in pulmonary neuroendocrine cells, one of the identified cells of origin for SCLC-A tumors. The expression of KSR2 in SCLC and pulmonary neuroendocrine cells (PNECs) was previously unrecognized and serves as a novel model for understanding the role of KSR2-dependent signaling in normal and malignant tissues. Disruption of KSR2 in SCLC-A cell lines inhibits the colony forming ability of tumor propagating cells (TPCs) in vitro and their tumor initiating capacity in vivo. The effect of KSR2 depletion on self-renewal and clonogenicity is dependent on the interaction of KSR2 with ERK. These data indicate that the expression of KSR2 is an essential driver of SCLC-A tumor propagating cell function, and therefore may play a role in SCLC tumor initiation. These findings shed light on a novel effector promoting initiation of ASCL1-subtype SCLC tumors, and a potential subtype-specific therapeutic target. Implications: Manipulation of the molecular scaffold KSR2 in ASCL1-subtype small-cell lung cancer cells reveals its contribution to self-renewal, clonogenicity, and tumor initiation.

{"title":"KSR2 promotes self-renewal and clonogenicity of small-cell lung carcinoma.","authors":"Dianna H Huisman, Deepan Chatterjee, Robert A Svoboda, Heidi M Vieira, Abbie S Ireland, Sydney Skupa, James W Askew, Danielle E Frodyma, Luc Girard, Kurt W Fisher, Michael S Kareta, John D Minna, Trudy G Oliver, Robert E Lewis","doi":"10.1158/1541-7786.MCR-24-0546","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0546","url":null,"abstract":"<p><p>Small-cell lung carcinoma (SCLC) tumors are heterogeneous, with a subpopulation of cells primed for tumor initiation. Here, we show that Kinase Suppressor of Ras 2 (KSR2) promotes the self-renewal and clonogenicity of SCLC cells. KSR2 is a molecular scaffold that promotes Raf/MEK/ERK signaling. KSR2 is preferentially expressed in the ASCL1 subtype of SCLC (SCLC-A) tumors and is expressed in pulmonary neuroendocrine cells, one of the identified cells of origin for SCLC-A tumors. The expression of KSR2 in SCLC and pulmonary neuroendocrine cells (PNECs) was previously unrecognized and serves as a novel model for understanding the role of KSR2-dependent signaling in normal and malignant tissues. Disruption of KSR2 in SCLC-A cell lines inhibits the colony forming ability of tumor propagating cells (TPCs) in vitro and their tumor initiating capacity in vivo. The effect of KSR2 depletion on self-renewal and clonogenicity is dependent on the interaction of KSR2 with ERK. These data indicate that the expression of KSR2 is an essential driver of SCLC-A tumor propagating cell function, and therefore may play a role in SCLC tumor initiation. These findings shed light on a novel effector promoting initiation of ASCL1-subtype SCLC tumors, and a potential subtype-specific therapeutic target. Implications: Manipulation of the molecular scaffold KSR2 in ASCL1-subtype small-cell lung cancer cells reveals its contribution to self-renewal, clonogenicity, and tumor initiation.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143597417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANGEL2 modulates wildtype TP53 translation and doxorubicin chemosensitivity in colon cancer. ANGEL2 可调节结肠癌中野生型 TP53 的翻译和多柔比星的化学敏感性。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-07 DOI: 10.1158/1541-7786.MCR-24-0702
Christopher August Lucchesi, Saisamkalpa Mantrala, Darren Tran, Neelu Batra, Avani Durve, Conner Suen, Jin Zhang, Paramita Ghosh, Xinbin Chen

Multiple lines of correlative evidence support a role for ANGEL2, a novel cancer-relevant RNA-binding protein, in the modulation of chemoresistance and cancer patient survival. However, to date, no study has determined a mechanism by which ANGEL2 modulates cancer progression, nor its role in chemoresistance. Herein, we demonstrate that loss of ANGEL2 leads to a substantial decrease of the key tumor suppressor protein TP53. We show that ANGEL2 directly interacts with EIF4E, the rate limiting protein in cap-dependent translation. This interaction abrogates the ability for the TP53 translation repressor RBM38 to interact with EIF4E thereby enhancing TP53 translation. Loss of ANGEL2 in cancer cell lines resulted in increased 2D and 3D spheroid cell growth, and resistance to doxorubicin and etoposide. With therapeutic potential, treatment with Pep7, a seven amino-acid peptide derived from ANGEL2, rescued wildtype TP53 expression and sensitized cancer cells to doxorubicin. Together, we conclude that ANGEL2 modulates the EIF4E-RBM38 complex to enhance wildtype TP53 translation, and further, the Pep7 peptide may be explored as a therapeutic strategy for cancers which harbor wildtype TP53 expression. Implications: Loss of ANGEL2 contributes to decreased wildtype TP53 translation promoting doxorubicin resistance which can be rescued via an ANGEL2-derived peptide.

{"title":"ANGEL2 modulates wildtype TP53 translation and doxorubicin chemosensitivity in colon cancer.","authors":"Christopher August Lucchesi, Saisamkalpa Mantrala, Darren Tran, Neelu Batra, Avani Durve, Conner Suen, Jin Zhang, Paramita Ghosh, Xinbin Chen","doi":"10.1158/1541-7786.MCR-24-0702","DOIUrl":"10.1158/1541-7786.MCR-24-0702","url":null,"abstract":"<p><p>Multiple lines of correlative evidence support a role for ANGEL2, a novel cancer-relevant RNA-binding protein, in the modulation of chemoresistance and cancer patient survival. However, to date, no study has determined a mechanism by which ANGEL2 modulates cancer progression, nor its role in chemoresistance. Herein, we demonstrate that loss of ANGEL2 leads to a substantial decrease of the key tumor suppressor protein TP53. We show that ANGEL2 directly interacts with EIF4E, the rate limiting protein in cap-dependent translation. This interaction abrogates the ability for the TP53 translation repressor RBM38 to interact with EIF4E thereby enhancing TP53 translation. Loss of ANGEL2 in cancer cell lines resulted in increased 2D and 3D spheroid cell growth, and resistance to doxorubicin and etoposide. With therapeutic potential, treatment with Pep7, a seven amino-acid peptide derived from ANGEL2, rescued wildtype TP53 expression and sensitized cancer cells to doxorubicin. Together, we conclude that ANGEL2 modulates the EIF4E-RBM38 complex to enhance wildtype TP53 translation, and further, the Pep7 peptide may be explored as a therapeutic strategy for cancers which harbor wildtype TP53 expression. Implications: Loss of ANGEL2 contributes to decreased wildtype TP53 translation promoting doxorubicin resistance which can be rescued via an ANGEL2-derived peptide.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143573421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ribosome Profiling Reveals Translational Reprogramming via mTOR Activation in Omacetaxine Resistant Multiple Myeloma.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-06 DOI: 10.1158/1541-7786.MCR-24-0444
Zachary J Walker, Katherine F Vaeth, Amber Baldwin, Denis J Ohlstrom, Lauren T Reiman, Kady A Dennis, Kate Matlin, Beau M Idler, Brett M Stevens, Neelanjan Mukherjee, Daniel W Sherbenou

Protein homeostasis is critical to the survival of multiple myeloma (MM) cells. While this is targeted with proteasome inhibitors, mRNA translation inhibition has not entered trials. Recent work illustrates broad sensitivity MM cells to the translation inhibitor omacetaxine. We hypothesized that understanding how MM becomes resistant will lead to the development of drug combinations to prevent or delay relapse. We generated omacetaxine resistance in H929 and MM1S MM cell lines and compared them to parental lines. Resistant lines displayed decreased sensitivity to omacetaxine, with EC50 > 100 nM, compared to parental sensitivity of 24-54 nM. Since omacetaxine inhibits protein synthesis, we performed both RNA-sequencing and ribosome profiling (Ribo-seq) to identify shared and unique regulatory strategies of resistance. Transcripts encoding translation factors and containing Terminal OligoPyrimidine (TOP) sequence in their 5' UTR were translationally upregulated in both resistant cell lines. The mTOR pathway promotes the translation of TOP motif containing mRNAs. Indeed, mTOR inhibition with Torin 1 restored partial sensitivity to omacetaxine in both resistant cell lines. The combination was synergistic in omacetaxine naïve MM cell lines, and a combination effect was observed in vivo. Primary MM cells from patient samples were also sensitive to the combination. These results provide a rational approach for omacetaxine-based combination in patients with multiple myeloma, which have historically shown better responses to multi-agent regimens. Implications: Through the use of ribosome profiling, our findings indicate mTOR inhibition as a novel combination therapy for partnering with the translation inhibitor omacetaxine in the treatment of multiple myeloma.

蛋白质平衡对多发性骨髓瘤(MM)细胞的存活至关重要。蛋白酶体抑制剂可作为靶向药物,但 mRNA 翻译抑制剂尚未进入试验阶段。最近的研究表明,MM 细胞对翻译抑制剂奥美他辛具有广泛的敏感性。我们假设,了解 MM 如何产生耐药性将有助于开发出预防或延缓复发的药物组合。我们在 H929 和 MM1S MM 细胞系中产生了奥美他辛耐药性,并将它们与亲本细胞系进行了比较。耐药株对奥美他辛的敏感性降低,EC50 > 100 nM,而亲本的敏感性为 24-54 nM。由于奥美他辛抑制蛋白质合成,我们进行了RNA测序和核糖体图谱分析(Ribo-seq),以确定抗性的共同和独特调控策略。在两种耐药细胞系中,编码翻译因子并在其 5' UTR 中含有末端寡嘧啶(TOP)序列的转录本都出现了翻译上调。mTOR 通路促进了含有 TOP 矩阵的 mRNA 的翻译。事实上,用 Torin 1 抑制 mTOR 可使两种耐药细胞株恢复对奥美他辛的部分敏感性。在奥美他辛耐药的 MM 细胞系中,这种组合具有协同作用,而且在体内也观察到了组合效应。来自患者样本的原代 MM 细胞对联合疗法也很敏感。这些结果为在多发性骨髓瘤患者中使用基于奥美他辛的联合疗法提供了一种合理的方法。意义:通过使用核糖体分析,我们的研究结果表明,mTOR抑制剂是一种新型的联合疗法,可与翻译抑制剂奥美他辛合作治疗多发性骨髓瘤。
{"title":"Ribosome Profiling Reveals Translational Reprogramming via mTOR Activation in Omacetaxine Resistant Multiple Myeloma.","authors":"Zachary J Walker, Katherine F Vaeth, Amber Baldwin, Denis J Ohlstrom, Lauren T Reiman, Kady A Dennis, Kate Matlin, Beau M Idler, Brett M Stevens, Neelanjan Mukherjee, Daniel W Sherbenou","doi":"10.1158/1541-7786.MCR-24-0444","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0444","url":null,"abstract":"<p><p>Protein homeostasis is critical to the survival of multiple myeloma (MM) cells. While this is targeted with proteasome inhibitors, mRNA translation inhibition has not entered trials. Recent work illustrates broad sensitivity MM cells to the translation inhibitor omacetaxine. We hypothesized that understanding how MM becomes resistant will lead to the development of drug combinations to prevent or delay relapse. We generated omacetaxine resistance in H929 and MM1S MM cell lines and compared them to parental lines. Resistant lines displayed decreased sensitivity to omacetaxine, with EC50 > 100 nM, compared to parental sensitivity of 24-54 nM. Since omacetaxine inhibits protein synthesis, we performed both RNA-sequencing and ribosome profiling (Ribo-seq) to identify shared and unique regulatory strategies of resistance. Transcripts encoding translation factors and containing Terminal OligoPyrimidine (TOP) sequence in their 5' UTR were translationally upregulated in both resistant cell lines. The mTOR pathway promotes the translation of TOP motif containing mRNAs. Indeed, mTOR inhibition with Torin 1 restored partial sensitivity to omacetaxine in both resistant cell lines. The combination was synergistic in omacetaxine naïve MM cell lines, and a combination effect was observed in vivo. Primary MM cells from patient samples were also sensitive to the combination. These results provide a rational approach for omacetaxine-based combination in patients with multiple myeloma, which have historically shown better responses to multi-agent regimens. Implications: Through the use of ribosome profiling, our findings indicate mTOR inhibition as a novel combination therapy for partnering with the translation inhibitor omacetaxine in the treatment of multiple myeloma.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143567016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-06 DOI: 10.1158/1541-7786.MCR-24-0494
Yuhan Qiu, Andrew Chen, Rebecca Yu, Pablo Llevenes, Michael Seen, Naomi Y Ko, Stefano Monti, Gerald V Denis

Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR- 145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Implications: IR adipocyte exosomes modify the TME, enhance EMT, and promote brain metastasis-likely via miRNA pathways-suggesting that metabolic diseases like T2D foster a pro-metastatic TME, reducing survival, warranting close monitoring and potential metabolic interventions in TNBC patients with T2D.

{"title":"Insulin Resistance Increases TNBC Aggressiveness and Brain Metastasis via Adipocyte-derived Exosomes.","authors":"Yuhan Qiu, Andrew Chen, Rebecca Yu, Pablo Llevenes, Michael Seen, Naomi Y Ko, Stefano Monti, Gerald V Denis","doi":"10.1158/1541-7786.MCR-24-0494","DOIUrl":"10.1158/1541-7786.MCR-24-0494","url":null,"abstract":"<p><p>Patients with triple negative breast cancer (TNBC) and comorbid Type 2 Diabetes (T2D), characterized by insulin resistance of adipose tissue, have higher risk of metastasis and shorter survival. Adipocytes are the main non-malignant cells of the breast tumor microenvironment (TME). However, adipocyte metabolism is usually ignored in oncology and mechanisms that couple T2D to TNBC outcomes are poorly understood. Here we hypothesized that exosomes, small vesicles secreted by TME breast adipocytes, drive epithelial-to-mesenchymal transition (EMT) and metastasis in TNBC via miRNAs. Exosomes were purified from conditioned media of 3T3-L1 mature adipocytes, either insulin-sensitive (IS) or insulin-resistant (IR). Murine 4T1 cells, a TNBC model, were treated with exosomes in vitro (72h). EMT, proliferation and angiogenesis were elevated in IR vs. control and IS. Brain metastases showed more mesenchymal morphology and EMT enrichment in the IR group. MiR- 145a-3p is highly differentially expressed between IS and IR, and potentially regulates metastasis. Implications: IR adipocyte exosomes modify the TME, enhance EMT, and promote brain metastasis-likely via miRNA pathways-suggesting that metabolic diseases like T2D foster a pro-metastatic TME, reducing survival, warranting close monitoring and potential metabolic interventions in TNBC patients with T2D.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143566495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells. mettl3介导的m6A修饰调节肝癌细胞中多梳抑制复合体1 (PRC1)成分BMI1和RNF2。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-03 DOI: 10.1158/1541-7786.MCR-24-0362
Weina Chen, Jinqiang Zhang, Wenbo Ma, Nianli Liu, Tong Wu

Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.

甲基转移酶样3 (METTL3)是一种主要的RNA甲基转移酶,催化n6 -甲基腺苷(m6A)修饰。本研究旨在进一步阐明METTL3在肝细胞癌(HCC)中的作用和机制。通过水动力尾静脉注射诱导小鼠肝癌发展模型,我们发现METTL3促进了HCC的发展。在体外培养的人肝癌细胞系(Huh7和PLC/PRF/5)中,我们观察到shRNA稳定敲低METTL3可显著降低肿瘤细胞的增殖、集落形成和侵袭。我们将METTL3 shRNA敲低的Huh7和PLC/PRF/5细胞接种到SCID小鼠肝脏中,发现METTL3敲低能显著抑制肝癌异种移植肿瘤的生长。这些发现证实了METTL3在HCC中是一个重要的癌基因。通过n6 -甲基腺苷测序(m6A- seq)、RNA测序(RNA- seq)和随后的验证研究,我们确定了BMI1和RNF2,多梳抑制复合体1 (PRC1)的两个关键成分,是mettl3介导的HCC细胞m6A修饰的直接下游靶点。我们的数据表明,METTL3催化m6A修饰BMI1和RNF2 mRNA,通过m6A读取器蛋白IGF2BP1/2/3增加mRNA的稳定性。此外,我们发现METTL3抑制剂STM2457在体外和小鼠中显著抑制HCC细胞的生长。总的来说,本研究提供了新的证据,证明METTL3通过m6A修饰BMI1和RNF2促进HCC的发生和进展。我们的研究结果表明,METTL3-m6A-BMI1/RNF2信号轴可能代表HCC治疗的新靶点。意义:METTL3-m6A-BMI1/RNF2信号轴促进HCC的发生和进展。
{"title":"METTL3-Mediated m6A Modification Regulates the Polycomb Repressive Complex 1 Components BMI1 and RNF2 in Hepatocellular Carcinoma Cells.","authors":"Weina Chen, Jinqiang Zhang, Wenbo Ma, Nianli Liu, Tong Wu","doi":"10.1158/1541-7786.MCR-24-0362","DOIUrl":"10.1158/1541-7786.MCR-24-0362","url":null,"abstract":"<p><p>Methyltransferase-like 3 (METTL3) is a primary RNA methyltransferase that catalyzes N6-methyladenosine (m6A) modification. The current study aims to further delineate the effect and mechanism of METTL3 in hepatocellular carcinoma (HCC). By using a murine model of hepatocellular cancer development induced via hydrodynamic tail vein injection, we showed that METTL3 enhanced HCC development. In cultured human HCC cell lines (Huh7 and PLC/PRF/5), we observed that stable knockdown of METTL3 by short hairpin RNA significantly decreased tumor cell proliferation, colony formation, and invasion, in vitro. When Huh7 and PLC/PRF/5 cells with short hairpin RNA knockdown of METTL3 were inoculated into the livers of SCID mice, we found that METTL3 knockdown significantly inhibited the growth of HCC xenograft tumors. These findings establish METTL3 as an important oncogene in HCC. Through m6A sequencing, RNA sequencing, and subsequent validation studies, we identified BMI1 and RNF2, two key components of the polycomb repressive complex 1, as direct downstream targets of METTL3-mediated m6A modification in HCC cells. Our data indicated that METTL3 catalyzed m6A modification of BMI1 and RNF2 mRNAs which led to increased mRNA stability via the m6A reader proteins IGF2BP1/2/3. Furthermore, we showed that the METTL3 inhibitor, STM2457, significantly inhibited HCC cell growth in vitro and in mice. Collectively, this study provides novel evidence that METTL3 promotes HCC development and progression through m6A modification of BMI1 and RNF2. Our findings suggest that the METTL3-m6A-BMI1/RNF2 signaling axis may represent a new therapeutic target for the treatment of HCC. Implications: The METTL3-m6A-BMI1/RNF2 signaling axis promotes HCC development and progression.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"190-201"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stress and Obesity Signaling Converge on CREB Phosphorylation to Promote Pancreatic Cancer. 应激和肥胖信号汇聚在CREB磷酸化上促进胰腺癌。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-03 DOI: 10.1158/1541-7786.MCR-24-0785
Xiaoying Sun, Yaroslav Teper, James Sinnett-Smith, Mineh Markarian, O Joe Hines, Gang Li, Guido Eibl, Enrique Rozengurt

One of the deadliest types of cancer is pancreatic ductal adenocarcinoma (PDAC). Chronic stress and obesity are recognized as risk factors for PDAC. We hypothesized that the combination of stress and obesity strongly promotes pancreatic cancer development and growth. Here, we show that the stress mediator norepinephrine and the β-adrenergic receptor agonist isoproterenol rapidly stimulate cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation at Ser133 in human PDAC cells. Exposure to the nonselective β-adrenergic receptor antagonist propranolol or selective antagonists, including nebivolol, atenolol, or ICI118551, blocked CREB phosphorylation elicited by norepinephrine or isoproterenol in PDAC cells. Stimulation of PDAC cells with neurotensin, a neuropeptide implicated in obesity and PDAC, also stimulated CREB phosphorylation at Ser133. Mechanistically, norepinephrine induced CREB phosphorylation at Ser133 via PKA, whereas neurotensin promoted CREB phosphorylation predominantly through protein kinase D. Our results indicate that CREB is a point of signal convergence that mediates proliferation in PDAC cells and raised the possibility that stress and diet cooperate in promoting PDAC in vivo. To test this notion, mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, calorie diet that promotes early PDAC development were subjected to social isolation stress. We show that social isolation stress induced a significant increase in the proportion of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia) in KC mice subjected to an obesogenic high fat, calorie diet. Implications: Our data imply that chronic (social isolation) stress cooperates with diet-induced obesity in accelerating the development of pancreatic cancer.

最致命的癌症之一是胰腺导管腺癌(PDAC)。慢性压力和肥胖被认为是PDAC的危险因素。我们假设压力和肥胖的结合强烈地促进了胰腺癌的发展和生长。在这里,我们发现应激介质去甲肾上腺素和β肾上腺素能受体激动剂异丙肾上腺素快速刺激人PDAC细胞中CREB Ser133的磷酸化。暴露于非选择性β肾上腺素能受体拮抗剂普萘洛尔或选择性拮抗剂,包括奈比洛尔、阿替洛尔或ICI118551,可阻断PDAC细胞中去甲肾上腺素或异丙肾上腺素引起的CREB磷酸化。用神经紧张素(一种与肥胖和PDAC有关的神经肽)刺激PDAC细胞,也会刺激CREB的Ser133磷酸化。机制上,去甲肾上腺素通过PKA诱导CREB Ser133位点磷酸化,而神经紧张素主要通过蛋白激酶D (PKD)促进CREB磷酸化。我们的研究结果表明,CREB是介导PDAC细胞增殖的信号汇聚点,并提出了应激和饮食共同促进体内PDAC的可能性。为了验证这一观点,在所有胰腺谱系中表达KrasG12D的小鼠(KC小鼠)被喂食可促进PDAC早期发育的致肥性高脂肪、高热量饮食(HFCD),并遭受社会隔离压力(SIS)。我们发现,在致肥性HFCD的KC小鼠中,SIS诱导晚期PDAC前体病变(胰腺上皮内瘤变[PanIN]-3)的比例显著增加。结论:我们的数据表明,慢性(社会孤立)压力与饮食引起的肥胖共同加速了胰腺癌的发展。
{"title":"Stress and Obesity Signaling Converge on CREB Phosphorylation to Promote Pancreatic Cancer.","authors":"Xiaoying Sun, Yaroslav Teper, James Sinnett-Smith, Mineh Markarian, O Joe Hines, Gang Li, Guido Eibl, Enrique Rozengurt","doi":"10.1158/1541-7786.MCR-24-0785","DOIUrl":"10.1158/1541-7786.MCR-24-0785","url":null,"abstract":"<p><p>One of the deadliest types of cancer is pancreatic ductal adenocarcinoma (PDAC). Chronic stress and obesity are recognized as risk factors for PDAC. We hypothesized that the combination of stress and obesity strongly promotes pancreatic cancer development and growth. Here, we show that the stress mediator norepinephrine and the β-adrenergic receptor agonist isoproterenol rapidly stimulate cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation at Ser133 in human PDAC cells. Exposure to the nonselective β-adrenergic receptor antagonist propranolol or selective antagonists, including nebivolol, atenolol, or ICI118551, blocked CREB phosphorylation elicited by norepinephrine or isoproterenol in PDAC cells. Stimulation of PDAC cells with neurotensin, a neuropeptide implicated in obesity and PDAC, also stimulated CREB phosphorylation at Ser133. Mechanistically, norepinephrine induced CREB phosphorylation at Ser133 via PKA, whereas neurotensin promoted CREB phosphorylation predominantly through protein kinase D. Our results indicate that CREB is a point of signal convergence that mediates proliferation in PDAC cells and raised the possibility that stress and diet cooperate in promoting PDAC in vivo. To test this notion, mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, calorie diet that promotes early PDAC development were subjected to social isolation stress. We show that social isolation stress induced a significant increase in the proportion of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia) in KC mice subjected to an obesogenic high fat, calorie diet. Implications: Our data imply that chronic (social isolation) stress cooperates with diet-induced obesity in accelerating the development of pancreatic cancer.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"236-249"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut Microbiota-Mediated hsa_circ_0126925 Targets BCAA Metabolic Enzyme BCAT2 to Exacerbate Colorectal Cancer Progression. 肠道菌群介导的hsa_circ_0126925靶向BCAA代谢酶BCAT2,加速结直肠癌进展。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-03 DOI: 10.1158/1541-7786.MCR-24-0434
Huihui Yao, Jiancheng Xu, Aina Zhou, Danyang Shen, Qiuchen Dong, Xiaodong Yang, Mengyu Li, Xiuwei Mi, Yang Lu, Runze Zhong, Xinyu Shi, Qingliang Tai, Guoliang Chen, Bo Shi, Liang Sun, Diyuan Zhou, Yizhou Yao, Songbing He

Recent evidence indicates that a high-fat diet can promote tumor development, especially colorectal cancer, by influencing the microbiota. Regulatory circular RNA (circRNA) plays an important role in modulating host-microbe interactions; however, the specific mechanisms by which circRNAs influence cancer progression by regulating these interactions remain unclear. Here, we report that consumption of a high-fat diet modulates the microbiota by specifically upregulating the expression of the noncoding RNA hsa_circ_0126925 (herein, referred to as circ_0126925) in colorectal cancer. Acting as a scaffold, circ_0126925 hinders the recruitment of the E3 ubiquitin ligase tripartite motif-containing protein 21 (TRIM21) to branched-chain amino acid transaminase 2 (BCAT2), leading to reduced degradation of BCAT2. This reduction in targeted degradation of BCAT2 can protect tumors from limited branched-chain amino acid (BCAA) interference by improving the metabolism of BCAAs in colorectal cancer. Taken together, these data demonstrate that circ_0126925 plays a critical role in promoting the progression of colorectal cancer by maintaining BCAA metabolism and provide insight into the functions and crosstalk of circ_0126925 in host-microbe interactions in colorectal cancer. Implications: This study preliminarily confirms that circRNAs do indeed respond to microbiota/microbial metabolites, providing further evidence for the potential development of circRNAs as diagnostic tools and/or therapeutic agents to alleviate microbiome-related pathology in humans.

最近的证据表明,高脂肪饮食(HFD)可以通过影响微生物群来促进肿瘤的发展,特别是结直肠癌(CRC)。调控环状rna (circRNAs)在调节宿主-微生物相互作用中发挥重要作用;然而,circRNAs通过调节这些相互作用来影响癌症进展的具体机制尚不清楚。在这里,我们报道了食用HFD通过特异性上调CRC中非编码RNA hsa_circ_0126925(此处简称circ_0126925)的表达来调节微生物群。circ_0126925作为支架,阻碍E3泛素连接酶TRIM21 (three - partite motif-containing protein 21, TRIM21)向支链氨基酸转氨酶2 (BCAT2)募集,导致BCAT2降解减少。BCAT2靶向降解的减少可以通过改善CRC中BCAAs的代谢来保护肿瘤免受有限的支链氨基酸(BCAAs)干扰。综上所述,这些数据表明circ_0126925通过维持BCAA代谢在促进CRC进展中起关键作用,并为circ_0126925在CRC宿主-微生物相互作用中的功能和串扰提供了新的认识。意义:本研究初步证实了circRNAs确实对微生物群/微生物代谢物有反应,为circRNAs作为诊断工具和/或治疗剂的潜在发展提供了进一步的证据,以缓解人类微生物组相关病理。
{"title":"Gut Microbiota-Mediated hsa_circ_0126925 Targets BCAA Metabolic Enzyme BCAT2 to Exacerbate Colorectal Cancer Progression.","authors":"Huihui Yao, Jiancheng Xu, Aina Zhou, Danyang Shen, Qiuchen Dong, Xiaodong Yang, Mengyu Li, Xiuwei Mi, Yang Lu, Runze Zhong, Xinyu Shi, Qingliang Tai, Guoliang Chen, Bo Shi, Liang Sun, Diyuan Zhou, Yizhou Yao, Songbing He","doi":"10.1158/1541-7786.MCR-24-0434","DOIUrl":"10.1158/1541-7786.MCR-24-0434","url":null,"abstract":"<p><p>Recent evidence indicates that a high-fat diet can promote tumor development, especially colorectal cancer, by influencing the microbiota. Regulatory circular RNA (circRNA) plays an important role in modulating host-microbe interactions; however, the specific mechanisms by which circRNAs influence cancer progression by regulating these interactions remain unclear. Here, we report that consumption of a high-fat diet modulates the microbiota by specifically upregulating the expression of the noncoding RNA hsa_circ_0126925 (herein, referred to as circ_0126925) in colorectal cancer. Acting as a scaffold, circ_0126925 hinders the recruitment of the E3 ubiquitin ligase tripartite motif-containing protein 21 (TRIM21) to branched-chain amino acid transaminase 2 (BCAT2), leading to reduced degradation of BCAT2. This reduction in targeted degradation of BCAT2 can protect tumors from limited branched-chain amino acid (BCAA) interference by improving the metabolism of BCAAs in colorectal cancer. Taken together, these data demonstrate that circ_0126925 plays a critical role in promoting the progression of colorectal cancer by maintaining BCAA metabolism and provide insight into the functions and crosstalk of circ_0126925 in host-microbe interactions in colorectal cancer. Implications: This study preliminarily confirms that circRNAs do indeed respond to microbiota/microbial metabolites, providing further evidence for the potential development of circRNAs as diagnostic tools and/or therapeutic agents to alleviate microbiome-related pathology in humans.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"202-218"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873731/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cells in the Polyaneuploid Cancer Cell State Are Prometastatic. 多非整倍体癌细胞状态的细胞是前转移的。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-03-03 DOI: 10.1158/1541-7786.MCR-24-0689
Mikaela M Mallin, Louis T A Rolle, Michael J Schmidt, Shilpa Priyadarsini Nair, Amado J Zurita, Peter Kuhn, James Hicks, Kenneth J Pienta, Sarah R Amend

Our research aims to understand the adaptive-ergo potentially metastatic-responses of prostate cancer to changing microenvironments. Emerging evidence implicates a role of the polyaneuploid cancer cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study revealed that PACC presence in patient prostate tumors at the time of radical prostatectomy was predictive of future metastasis. To test for a causative relationship between PACC state biology and metastasis in prostate cancer, we leveraged a novel method designed for flow cytometric detection of circulating tumor cells (CTC) and disseminated tumor cells (DTC) from animal models. This approach provides both quantitative and qualitative information about the number and PACC status of recovered CTCs and DTCs. Specifically, we applied this approach to the analysis of subcutaneous, caudal artery, and intracardiac murine models. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. Furthermore, in vivo colonization assays proved that PACC populations can regain proliferative capacity at metastatic sites. Additional in vitro analyses revealed a PACC-specific partial epithelial-to-mesenchymal transition phenotype and a prometastatic secretory profile, together providing preliminary evidence of prometastatic mechanisms specific to the PACC state. Implications: Considering that many anticancer agents induce the PACC state, our data position the increased metastatic competency of PACC state cells as an important unforeseen ramification of neoadjuvant regimens, which may help explain clinical correlations between chemotherapy and metastatic progression.

我们的研究旨在了解前列腺癌对不断变化的微环境的适应性,从而潜在的转移性反应。新出现的证据暗示多整倍体癌细胞(PACC)状态在转移中的作用,假设PACC状态能够赋予转移能力。越来越多的体外证据支持PACC状态下细胞的转移潜力增加。此外,我们最近的回顾性研究表明,PACC在根治性前列腺切除术患者前列腺肿瘤中的存在预示着未来的转移。为了测试前列腺癌中PACC状态生物学与转移之间的因果关系,我们利用了一种新的方法,用于流式细胞术检测动物模型中的循环肿瘤细胞(ctc)和播散性肿瘤细胞(dtc)。这种方法提供了关于恢复的ctc和dtc的数量和pacc状态的定量和定性信息。具体来说,我们将这种方法应用于皮下、尾动脉和心内小鼠模型的分析。整理所有模型的数据,我们发现74%的恢复的ctc和dtc处于PACC状态。此外,体内定植试验证明PACC种群可以在转移部位重新获得增殖能力。另外的体外分析揭示了PACC特异性部分上皮-间质转化表型和促转移分泌谱,共同提供了PACC状态特异性促转移机制的初步证据。意义:考虑到许多抗癌药物诱导PACC状态,我们的数据表明,PACC状态细胞转移能力的增强是新辅助方案的一个重要的不可预见的分支,这可能有助于解释化疗与转移进展之间的临床相关性。
{"title":"Cells in the Polyaneuploid Cancer Cell State Are Prometastatic.","authors":"Mikaela M Mallin, Louis T A Rolle, Michael J Schmidt, Shilpa Priyadarsini Nair, Amado J Zurita, Peter Kuhn, James Hicks, Kenneth J Pienta, Sarah R Amend","doi":"10.1158/1541-7786.MCR-24-0689","DOIUrl":"10.1158/1541-7786.MCR-24-0689","url":null,"abstract":"<p><p>Our research aims to understand the adaptive-ergo potentially metastatic-responses of prostate cancer to changing microenvironments. Emerging evidence implicates a role of the polyaneuploid cancer cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study revealed that PACC presence in patient prostate tumors at the time of radical prostatectomy was predictive of future metastasis. To test for a causative relationship between PACC state biology and metastasis in prostate cancer, we leveraged a novel method designed for flow cytometric detection of circulating tumor cells (CTC) and disseminated tumor cells (DTC) from animal models. This approach provides both quantitative and qualitative information about the number and PACC status of recovered CTCs and DTCs. Specifically, we applied this approach to the analysis of subcutaneous, caudal artery, and intracardiac murine models. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. Furthermore, in vivo colonization assays proved that PACC populations can regain proliferative capacity at metastatic sites. Additional in vitro analyses revealed a PACC-specific partial epithelial-to-mesenchymal transition phenotype and a prometastatic secretory profile, together providing preliminary evidence of prometastatic mechanisms specific to the PACC state. Implications: Considering that many anticancer agents induce the PACC state, our data position the increased metastatic competency of PACC state cells as an important unforeseen ramification of neoadjuvant regimens, which may help explain clinical correlations between chemotherapy and metastatic progression.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"219-235"},"PeriodicalIF":4.1,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1