首页 > 最新文献

Molecular Cancer Research最新文献

英文 中文
SIRT2 regulates the SMARCB1 loss-driven differentiation block in ATRT.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-17 DOI: 10.1158/1541-7786.MCR-24-0926
Irina Alimova, Dong Wang, John DeSisto, Etienne Danis, Senthilnath Lakshmanachetty, Eric Prince, Gillian Murdock, Angela Pierce, Andrew Donson, Ilango Balakrishnan, Natalie Serkova, Hening Lin, Nicholas K Foreman, Nathan Dahl, Sujatha Venkataraman, Rajeev Vibhakar

Atypical teratoid rhabdoid tumor (ATRT) is a highly aggressive pediatric brain tumor driven by the loss of SMARCB1, which results in epigenetic dysregulation of the genome. SMARCB1 loss affects lineage commitment and differentiation by controlling gene expression. We hypothesized that additional epigenetic factors co-operate with SMARCB1 loss to control cell self-renewal and drive ATRT. We performed an unbiased epigenome targeted screen to identify genes that co-operate with SMARCB1 and identified SIRT2 as a key regulator. Using in vitro pluripotency assays combined with in vivo single cell RNA transcriptomics, we examined the impact of SIRT2 on differentiation of ATRT cells. We employed a series of orthotopic murine models treated with SIRT2 inhibitors to examine the impact on survival and clinical applicability. We found that ATRT cells are highly dependent on SIRT2 for survival. Genetic or chemical inhibition led to decrease cell self-renewal and induction of differentiation in tumor spheres and in vivo models. We found that SIRT2 inhibition can restore gene expression programs lost due to SMARCB1 loss and reverse the differentiation block in ATRT in vivo. Finally, we showed the in vivo efficacy of a clinically relevant inhibitor demonstrating SIRT2 inhibition as a potential therapeutic strategy. We concluded that SIRT2 is a critical dependency in SMARCB1 deficient ATRT cells and acts by controlling the pluripotency-differentiation switch. Thus, SIRT2 inhibition is a promising therapeutic approach that warrants further investigation and clinical development. Implications: SIRT2 inhibition is a molecular vulnerability in SMARCB1-deleted tumors.

{"title":"SIRT2 regulates the SMARCB1 loss-driven differentiation block in ATRT.","authors":"Irina Alimova, Dong Wang, John DeSisto, Etienne Danis, Senthilnath Lakshmanachetty, Eric Prince, Gillian Murdock, Angela Pierce, Andrew Donson, Ilango Balakrishnan, Natalie Serkova, Hening Lin, Nicholas K Foreman, Nathan Dahl, Sujatha Venkataraman, Rajeev Vibhakar","doi":"10.1158/1541-7786.MCR-24-0926","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0926","url":null,"abstract":"<p><p>Atypical teratoid rhabdoid tumor (ATRT) is a highly aggressive pediatric brain tumor driven by the loss of SMARCB1, which results in epigenetic dysregulation of the genome. SMARCB1 loss affects lineage commitment and differentiation by controlling gene expression. We hypothesized that additional epigenetic factors co-operate with SMARCB1 loss to control cell self-renewal and drive ATRT. We performed an unbiased epigenome targeted screen to identify genes that co-operate with SMARCB1 and identified SIRT2 as a key regulator. Using in vitro pluripotency assays combined with in vivo single cell RNA transcriptomics, we examined the impact of SIRT2 on differentiation of ATRT cells. We employed a series of orthotopic murine models treated with SIRT2 inhibitors to examine the impact on survival and clinical applicability. We found that ATRT cells are highly dependent on SIRT2 for survival. Genetic or chemical inhibition led to decrease cell self-renewal and induction of differentiation in tumor spheres and in vivo models. We found that SIRT2 inhibition can restore gene expression programs lost due to SMARCB1 loss and reverse the differentiation block in ATRT in vivo. Finally, we showed the in vivo efficacy of a clinically relevant inhibitor demonstrating SIRT2 inhibition as a potential therapeutic strategy. We concluded that SIRT2 is a critical dependency in SMARCB1 deficient ATRT cells and acts by controlling the pluripotency-differentiation switch. Thus, SIRT2 inhibition is a promising therapeutic approach that warrants further investigation and clinical development. Implications: SIRT2 inhibition is a molecular vulnerability in SMARCB1-deleted tumors.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic dysregulation of retrotransposons in cancer.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-13 DOI: 10.1158/1541-7786.MCR-24-0744
Danny Leung, Kwok Yu Liu

Approximately 97% of the human genome comprises non-coding sequences, with nearly half originating from transposable elements. Among these, retrotransposons represent a critical subclass that replicates via a "copy-and-paste" mechanism and significantly influences the regulation of host genomes. In both normal and pathological contexts, retrotransposons contribute a vast reservoir of regulatory elements that can modulate the expression of genes. If left unchecked, retrotransposons can substantially affect host transcriptional programs and genomic integrity. Therefore, various mechanisms, including epigenetic modifications, are employed to mitigate their potentially deleterious effects. In diseases such as cancers, the epigenome is often significantly reprogrammed, which can lead to retrotransposon dysregulation. Drawing insights from recent studies conducted in human and murine cells, this review examines how retrotransposons expand the complexity of mammalian genomes, describes the impact of their epigenetic dysregulation in cancer development, and highlights the potential of targeting these sequences for therapeutic strategies.

{"title":"Epigenetic dysregulation of retrotransposons in cancer.","authors":"Danny Leung, Kwok Yu Liu","doi":"10.1158/1541-7786.MCR-24-0744","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0744","url":null,"abstract":"<p><p>Approximately 97% of the human genome comprises non-coding sequences, with nearly half originating from transposable elements. Among these, retrotransposons represent a critical subclass that replicates via a \"copy-and-paste\" mechanism and significantly influences the regulation of host genomes. In both normal and pathological contexts, retrotransposons contribute a vast reservoir of regulatory elements that can modulate the expression of genes. If left unchecked, retrotransposons can substantially affect host transcriptional programs and genomic integrity. Therefore, various mechanisms, including epigenetic modifications, are employed to mitigate their potentially deleterious effects. In diseases such as cancers, the epigenome is often significantly reprogrammed, which can lead to retrotransposon dysregulation. Drawing insights from recent studies conducted in human and murine cells, this review examines how retrotransposons expand the complexity of mammalian genomes, describes the impact of their epigenetic dysregulation in cancer development, and highlights the potential of targeting these sequences for therapeutic strategies.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143409334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KSR1 mediates small-cell lung carcinoma tumor initiation and cisplatin resistance.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-10 DOI: 10.1158/1541-7786.MCR-24-0652
Deepan Chatterjee, Robert A Svoboda, Dianna H Huisman, Benjamin J Drapkin, Heidi M Vieira, Chaitra Rao, James W Askew, Kurt W Fisher, Robert E Lewis

Small-cell lung cancer (SCLC) has a dismal five-year survival rate of less than 7%, with limited advances in first line treatment over the past four decades. Tumor-initiating cells (TICs) contribute to resistance and relapse, a major impediment to SCLC treatment. Here, we identify Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade, as a critical regulator of SCLC TIC formation and tumor initiation in vivo. We further show that KSR1 mediates cisplatin resistance in SCLC. While 50-70% of control cells show resistance after 6-week exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC cells in ASCL1, NeuroD1, and POU2F3 subtypes. KSR1 KO significantly enhances the ability of cisplatin to decrease SCLC TICs via in vitro extreme limiting dilution analysis (ELDA), indicating that KSR1 disruption enhances the cisplatin toxicity of cells responsible for therapeutic resistance and tumor initiation. The ability of KSR1 disruption to prevent cisplatin resistant in H82 tumor xenograft formation supports this conclusion. Previous studies indicate ERK activation inhibits SCLC tumor growth and development. We observe a minimal effect of pharmacological ERK inhibition on cisplatin resistance and no impact on TIC formation via in vitro ELDA. However, mutational analysis of the KSR1 DEF domain, which mediates interaction with ERK, suggests that ERK interaction with KSR1 is essential for KSR1-driven cisplatin resistance. These findings reveal KSR1 as a potential therapeutic target across multiple SCLC subtypes. Implications: Genetic manipulation of KSR1 in SCLC reveals its contribution to cisplatin resistance and tumor initiation.

{"title":"KSR1 mediates small-cell lung carcinoma tumor initiation and cisplatin resistance.","authors":"Deepan Chatterjee, Robert A Svoboda, Dianna H Huisman, Benjamin J Drapkin, Heidi M Vieira, Chaitra Rao, James W Askew, Kurt W Fisher, Robert E Lewis","doi":"10.1158/1541-7786.MCR-24-0652","DOIUrl":"10.1158/1541-7786.MCR-24-0652","url":null,"abstract":"<p><p>Small-cell lung cancer (SCLC) has a dismal five-year survival rate of less than 7%, with limited advances in first line treatment over the past four decades. Tumor-initiating cells (TICs) contribute to resistance and relapse, a major impediment to SCLC treatment. Here, we identify Kinase Suppressor of Ras 1 (KSR1), a molecular scaffold for the Raf/MEK/ERK signaling cascade, as a critical regulator of SCLC TIC formation and tumor initiation in vivo. We further show that KSR1 mediates cisplatin resistance in SCLC. While 50-70% of control cells show resistance after 6-week exposure to cisplatin, CRISPR/Cas9-mediated KSR1 knockout prevents resistance in >90% of SCLC cells in ASCL1, NeuroD1, and POU2F3 subtypes. KSR1 KO significantly enhances the ability of cisplatin to decrease SCLC TICs via in vitro extreme limiting dilution analysis (ELDA), indicating that KSR1 disruption enhances the cisplatin toxicity of cells responsible for therapeutic resistance and tumor initiation. The ability of KSR1 disruption to prevent cisplatin resistant in H82 tumor xenograft formation supports this conclusion. Previous studies indicate ERK activation inhibits SCLC tumor growth and development. We observe a minimal effect of pharmacological ERK inhibition on cisplatin resistance and no impact on TIC formation via in vitro ELDA. However, mutational analysis of the KSR1 DEF domain, which mediates interaction with ERK, suggests that ERK interaction with KSR1 is essential for KSR1-driven cisplatin resistance. These findings reveal KSR1 as a potential therapeutic target across multiple SCLC subtypes. Implications: Genetic manipulation of KSR1 in SCLC reveals its contribution to cisplatin resistance and tumor initiation.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PAX8 interacts with the SWI/SNF complex at enhancers to drive proliferation in ovarian cancer.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1158/1541-7786.MCR-24-0710
Kostianna Sereti, Anna E Russo, Ryan Raisner, Taylur P Ma, Karen E Gascoigne

Activation of lineage-specific gene expression programs is mediated by recruitment of lineage-specific transcription factors and their coactivators to chromatin. The lineage factor PAX8 drives essential gene expression in ovarian cancer cells and is required for tumor proliferation. However, the molecular details surrounding co-factor recruitment and specific activation of transcription by PAX8 remain unknown. Here, we identify an important functional interaction between PAX8 and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. We show that PAX8 can recruit SWI/SNF complexes to DNA, where they function to open chromatin and facilitate expression of PAX8 target genes. Genetic deletion of PAX8 results in loss of SWI/SNF from PAX8 bound enhancers, loss of expression of associated target genes, and reduced proliferation. These results can be phenocopied by pharmacological inhibition of SWI/SNF ATPase activity. These data indicate that PAX8 mediates the expression of an essential ovarian cancer proliferative program in part by the recruitment of the SWI/SNF complex, highlighting a novel vulnerability in PAX8 dependent ovarian cancer. Implications: PAX8 recruits SWI/SNF complexes to enhancers, to mediate expression of genes essential for ovarian cancer proliferation.

{"title":"PAX8 interacts with the SWI/SNF complex at enhancers to drive proliferation in ovarian cancer.","authors":"Kostianna Sereti, Anna E Russo, Ryan Raisner, Taylur P Ma, Karen E Gascoigne","doi":"10.1158/1541-7786.MCR-24-0710","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0710","url":null,"abstract":"<p><p>Activation of lineage-specific gene expression programs is mediated by recruitment of lineage-specific transcription factors and their coactivators to chromatin. The lineage factor PAX8 drives essential gene expression in ovarian cancer cells and is required for tumor proliferation. However, the molecular details surrounding co-factor recruitment and specific activation of transcription by PAX8 remain unknown. Here, we identify an important functional interaction between PAX8 and the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. We show that PAX8 can recruit SWI/SNF complexes to DNA, where they function to open chromatin and facilitate expression of PAX8 target genes. Genetic deletion of PAX8 results in loss of SWI/SNF from PAX8 bound enhancers, loss of expression of associated target genes, and reduced proliferation. These results can be phenocopied by pharmacological inhibition of SWI/SNF ATPase activity. These data indicate that PAX8 mediates the expression of an essential ovarian cancer proliferative program in part by the recruitment of the SWI/SNF complex, highlighting a novel vulnerability in PAX8 dependent ovarian cancer. Implications: PAX8 recruits SWI/SNF complexes to enhancers, to mediate expression of genes essential for ovarian cancer proliferation.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kindlin-2-mediated hematopoiesis remodeling regulates triple-negative breast cancer immune evasion.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1158/1541-7786.MCR-24-0698
Wei Wang, Rahul Chaudhary, Justin Szpendyk, Lamyae El Khalki, Neelum Aziz Yousafzai, Ricky Chan, Amar Desai, Khalid Sossey-Alaoui

Triple-negative breast cancer (TNBC) presents significant clinical challenges due to its limited treatment options and aggressive behavior, often associated with poor prognosis. This study focuses on Kindlin-2, an adaptor protein, and its role in TNBC progression, particularly in hematopoiesis-mediated immune evasion. TNBC tumors expressing high levels of Kindlin-2 induce a notable reshaping of hematopoiesis, promoting expansion of myeloid cells in bone marrow (BM) and spleen. This shift correlated with increased levels of neutrophils and monocytes in tumor-bearing mice over time. Conversely, genetic knockout of Kindlin-2 mitigated this myeloid bias and fostered T cell infiltration within the tumor microenvironment, indicating Kindlin-2's pivotal role in immune modulation. Further investigations revealed that Kindlin-2 deficiency led to reduced expression of PD-L1, a critical immune checkpoint inhibitor, in TNBC tumors. This molecular change sensitized Kindlin-2-deficient tumors to host anti-tumor immune responses, resulting in enhanced tumor suppression in immune-competent mouse models. Single-cell RNA sequencing, bulk RNA-seq, and immunohistochemistry data supported these findings by highlighting enriched immune-related pathways and increased infiltration of immune cells in Kindlin-2-deficient tumors. Therapeutically, targeting PD-L1 in Kindlin-2-expressing TNBC tumors effectively inhibited tumor growth, akin to the effects observed with genetic Kindlin-2 knockout or PD-L1-KO. Our data underscore Kindlin-2 as a promising therapeutic target in combination with immune checkpoint blockade to bolster anti-tumor immunity and counteract resistance mechanisms typical of TNBC and other immune evasive solid tumors. Implications: Kindlin-2 regulates tumor immune evasion through the systemic modulation of hematopoiesis and PD-L1 expression, which warrants therapeutic targeting of Kindlin-2 in TNBC patients.

{"title":"Kindlin-2-mediated hematopoiesis remodeling regulates triple-negative breast cancer immune evasion.","authors":"Wei Wang, Rahul Chaudhary, Justin Szpendyk, Lamyae El Khalki, Neelum Aziz Yousafzai, Ricky Chan, Amar Desai, Khalid Sossey-Alaoui","doi":"10.1158/1541-7786.MCR-24-0698","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0698","url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) presents significant clinical challenges due to its limited treatment options and aggressive behavior, often associated with poor prognosis. This study focuses on Kindlin-2, an adaptor protein, and its role in TNBC progression, particularly in hematopoiesis-mediated immune evasion. TNBC tumors expressing high levels of Kindlin-2 induce a notable reshaping of hematopoiesis, promoting expansion of myeloid cells in bone marrow (BM) and spleen. This shift correlated with increased levels of neutrophils and monocytes in tumor-bearing mice over time. Conversely, genetic knockout of Kindlin-2 mitigated this myeloid bias and fostered T cell infiltration within the tumor microenvironment, indicating Kindlin-2's pivotal role in immune modulation. Further investigations revealed that Kindlin-2 deficiency led to reduced expression of PD-L1, a critical immune checkpoint inhibitor, in TNBC tumors. This molecular change sensitized Kindlin-2-deficient tumors to host anti-tumor immune responses, resulting in enhanced tumor suppression in immune-competent mouse models. Single-cell RNA sequencing, bulk RNA-seq, and immunohistochemistry data supported these findings by highlighting enriched immune-related pathways and increased infiltration of immune cells in Kindlin-2-deficient tumors. Therapeutically, targeting PD-L1 in Kindlin-2-expressing TNBC tumors effectively inhibited tumor growth, akin to the effects observed with genetic Kindlin-2 knockout or PD-L1-KO. Our data underscore Kindlin-2 as a promising therapeutic target in combination with immune checkpoint blockade to bolster anti-tumor immunity and counteract resistance mechanisms typical of TNBC and other immune evasive solid tumors. Implications: Kindlin-2 regulates tumor immune evasion through the systemic modulation of hematopoiesis and PD-L1 expression, which warrants therapeutic targeting of Kindlin-2 in TNBC patients.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF6 inhibits lung adenocarcinoma cell proliferation by promoting cyclin D2 degradation.
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-07 DOI: 10.1158/1541-7786.MCR-24-0703
Yuening Sun, Liyang Jiang, Zubin Zhang, Rongrong Zhu, Jingpei Liang, Ziyang Liu, Yuangming He, Zhenqian Huang, Chunhua Ling, Xiumin Zhou, Xinliang Mao

The E3 ubiquitin ligase RNF6 has been widely recognized for its role in promoting tumorigenesis in multiple cancers. However, we found it is downregulated in lung adenocarcinoma (LUAD) and the molecular rationale for this discrepancy remains unclear. In the present study, we find that RNF6 but not its ΔRING inactive form inhibits LUAD cell proliferation and migration and sensitizes LUAD to chemotherapy. To understand the molecular mechanism, we utilize affinity purification/tandem mass spectrometry to analyze RNF6-interacting proteins and find that cyclin D2 (CCND2), a key regulator of the G1/S transition in the cell cycle. RNF6 physically binds to CCND2 and mediates its K48-linked polyubiquitination and subsequent degradation. However, ΔRING RNF6 fails to mediate CCND2 for ubiquitination and degradation. Moreover, Thr280 is critically important for CCND2 stability. When Thr280 is mutated, CCND2 becomes more stable and less ubiquitinated by RNF6. Furthermore, RNF6 arrests LUAD cell cycle at the G1 phase by inhibiting the CCND2/pRb signaling pathway, which is consistent with decreased cell proliferation. Lastly, RNF6 curtails the growth of LUAD xenografts in vivo, associated with decreased CCND2 expression. Therefore, RNF6 is a novel E3 ligase of CCND2 and suppresses LUAD cell proliferation. Implications: This study reveals a novel regulation on cell cycle transition in LUAD and suggests the RNF6/CCND2 axis may represent an alternative therapeutic target for the treatment of LUAD.

{"title":"RNF6 inhibits lung adenocarcinoma cell proliferation by promoting cyclin D2 degradation.","authors":"Yuening Sun, Liyang Jiang, Zubin Zhang, Rongrong Zhu, Jingpei Liang, Ziyang Liu, Yuangming He, Zhenqian Huang, Chunhua Ling, Xiumin Zhou, Xinliang Mao","doi":"10.1158/1541-7786.MCR-24-0703","DOIUrl":"https://doi.org/10.1158/1541-7786.MCR-24-0703","url":null,"abstract":"<p><p>The E3 ubiquitin ligase RNF6 has been widely recognized for its role in promoting tumorigenesis in multiple cancers. However, we found it is downregulated in lung adenocarcinoma (LUAD) and the molecular rationale for this discrepancy remains unclear. In the present study, we find that RNF6 but not its ΔRING inactive form inhibits LUAD cell proliferation and migration and sensitizes LUAD to chemotherapy. To understand the molecular mechanism, we utilize affinity purification/tandem mass spectrometry to analyze RNF6-interacting proteins and find that cyclin D2 (CCND2), a key regulator of the G1/S transition in the cell cycle. RNF6 physically binds to CCND2 and mediates its K48-linked polyubiquitination and subsequent degradation. However, ΔRING RNF6 fails to mediate CCND2 for ubiquitination and degradation. Moreover, Thr280 is critically important for CCND2 stability. When Thr280 is mutated, CCND2 becomes more stable and less ubiquitinated by RNF6. Furthermore, RNF6 arrests LUAD cell cycle at the G1 phase by inhibiting the CCND2/pRb signaling pathway, which is consistent with decreased cell proliferation. Lastly, RNF6 curtails the growth of LUAD xenografts in vivo, associated with decreased CCND2 expression. Therefore, RNF6 is a novel E3 ligase of CCND2 and suppresses LUAD cell proliferation. Implications: This study reveals a novel regulation on cell cycle transition in LUAD and suggests the RNF6/CCND2 axis may represent an alternative therapeutic target for the treatment of LUAD.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TIPE Inhibits Ferroptosis in Colorectal Cancer Cells by Regulating MGST1/ALOX5. TIPE 通过调控 MGST1/ALOX5 抑制结直肠癌细胞的铁突变。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1158/1541-7786.MCR-24-0433
Changxiu Yan, Shengnan Yu, Jing Zhang, Zhen Li, Zeyang Lin, Shiying Zhang, Haoyang Li, Zhijian Ye, Jiyi Huang, Yuhan Ye, Guohong Zhuang

TIPE is a protein highly expressed in various cancers that promotes ferroptosis in colorectal cancer cells. Ferroptosis is a nonapoptotic cell death caused by lipid peroxidation, and microsomal glutathione transferase 1 (MGST1) is a critical enzyme that resists lipid peroxidation. This study explored how TIPE regulates MGST1 expression to inhibit ferroptosis and promote colorectal cancer proliferation. TIPE was highly expressed in colorectal cancer tissues and positively correlated with the proliferation of human colorectal cancer cells. We measured levels of reactive oxygen species and lipid reactive oxygen species in colorectal cancer cells with differential expression of TIPE and detected ferroptosis using transmission electron microscopy. Bioinformatics analysis revealed a positive correlation of expression patterns between TIPE and MGST1 in colorectal cancer. TIPE regulated the expression of MGST1 by activating the phosphorylation of ERK1/2. Coimmunoprecipitation revealed binding between MGST1 and ALOX5. This binding inhibited the phosphorylation of ALOX5, inhibiting ferroptosis and promoting the proliferation of colorectal cancer cells. A tumor formation experiment in nude mice supported our findings that TIPE regulates the proliferation of colorectal cancer by regulating ferroptosis. Implications: TIPE inhibits colorectal cancer ferroptosis via an MGST1-ALOX5 interaction to promote colorectal cancer proliferation. These findings suggest future colorectal cancer treatment strategies.

TIPE是一种在多种癌症中高度表达的蛋白质,它能促进结直肠癌(CRC)细胞的铁凋亡。铁过氧化是一种由脂质过氧化引起的非凋亡性细胞死亡,而 MGST1 是一种抵抗脂质过氧化的关键酶。本研究探讨了TIPE如何调控MGST1的表达以抑制铁凋亡并促进CRC增殖。TIPE 在 CRC 组织中高表达,并与人类 CRC 细胞的增殖呈正相关。我们测量了不同TIPE表达的CRC细胞中活性氧(ROS)和脂质ROS的水平,并使用透射电子显微镜检测了铁褐斑病。生物信息学分析表明,TIPE 和 MGST1 在 CRC 中的表达模式呈正相关。TIPE通过激活ERK1/2的磷酸化来调节MGST1的表达。共免疫沉淀显示了 MGST1 与 ALOX5 之间的结合。这种结合抑制了 ALOX5 的磷酸化,抑制了铁变态反应,促进了 CRC 细胞的增殖。裸鼠肿瘤形成实验支持了我们的发现,即 TIPE 通过调节铁凋亡来调节 CRC 的增殖。意义:TIPE 通过 MGST1-ALOX5 相互作用抑制 CRC 铁突变,从而促进 CRC 增殖。这些发现为未来的 CRC 治疗策略提供了建议。
{"title":"TIPE Inhibits Ferroptosis in Colorectal Cancer Cells by Regulating MGST1/ALOX5.","authors":"Changxiu Yan, Shengnan Yu, Jing Zhang, Zhen Li, Zeyang Lin, Shiying Zhang, Haoyang Li, Zhijian Ye, Jiyi Huang, Yuhan Ye, Guohong Zhuang","doi":"10.1158/1541-7786.MCR-24-0433","DOIUrl":"10.1158/1541-7786.MCR-24-0433","url":null,"abstract":"<p><p>TIPE is a protein highly expressed in various cancers that promotes ferroptosis in colorectal cancer cells. Ferroptosis is a nonapoptotic cell death caused by lipid peroxidation, and microsomal glutathione transferase 1 (MGST1) is a critical enzyme that resists lipid peroxidation. This study explored how TIPE regulates MGST1 expression to inhibit ferroptosis and promote colorectal cancer proliferation. TIPE was highly expressed in colorectal cancer tissues and positively correlated with the proliferation of human colorectal cancer cells. We measured levels of reactive oxygen species and lipid reactive oxygen species in colorectal cancer cells with differential expression of TIPE and detected ferroptosis using transmission electron microscopy. Bioinformatics analysis revealed a positive correlation of expression patterns between TIPE and MGST1 in colorectal cancer. TIPE regulated the expression of MGST1 by activating the phosphorylation of ERK1/2. Coimmunoprecipitation revealed binding between MGST1 and ALOX5. This binding inhibited the phosphorylation of ALOX5, inhibiting ferroptosis and promoting the proliferation of colorectal cancer cells. A tumor formation experiment in nude mice supported our findings that TIPE regulates the proliferation of colorectal cancer by regulating ferroptosis. Implications: TIPE inhibits colorectal cancer ferroptosis via an MGST1-ALOX5 interaction to promote colorectal cancer proliferation. These findings suggest future colorectal cancer treatment strategies.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"143-154"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells. 致癌 KRAS 突变对结直肠癌细胞的蠕动产生独特的机制传导反应。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1158/1541-7786.MCR-24-0624
Abigail J Clevenger, Claudia A Collier, John Paul M Gorley, Sarah Colijn, Maygan K McFarlin, Spencer C Solberg, Scott Kopetz, Amber N Stratman, Shreya A Raghavan

Colorectal cancer tumors start as polyps on the inner lining of the colorectum, in which they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select colorectal cancer lines that harbored an oncogenic mutation in the Kirsten rat sarcoma virus (KRAS) gene. In this study, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in colorectal cancer. Peristalsis enriched cancer stem cell marker Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in KRAS mutant lines in a Wnt ligand-independent manner. Conversely, LGR5 enrichment in wild-type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction were apparent via unbiased gene set enrichment analysis, in which many unique pathways were enriched in wild-type versus mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis-induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain independent of other cooperating signals.

结肠直肠癌(CRC)肿瘤始于结肠直肠内壁的息肉,息肉暴露在蠕动的机械作用下。我们之前的研究利用定制的蠕动生物反应器证明,结肠蠕动导致CRC细胞中的癌干细胞富集。然而,这种恶性机械传导反应仅限于携带 KRAS 基因致癌突变的部分 CRC 株系。在此,我们探讨了活化的 KRAS 基因突变对 CRC 中与蠕动相关的机械传导的影响。在KRAS突变株中,肠蠕动富集了癌症干细胞标记物LGR5,这种富集方式与Wnt配体无关。相反,在暴露于蠕动的野生型 KRAS 株系中,LGR5 的富集程度极低。蠕动下游的 LGR5 富集转化为体内肿瘤致病性的增加。通过无偏基因组富集分析,机械传导的差异显而易见,野生型与突变株中富集了许多独特的通路。肠蠕动还能触发β-catenin核定位,而不依赖于Wnt配体,尤其是在KRAS突变株中。通过功能增益和缺失策略验证了KRAS的参与。蠕动诱导的β-catenin激活和LGR5富集取决于MEK/ERK级联的激活。综上所述,我们的研究结果表明,致癌的KRAS突变赋予结直肠癌细胞独特的蠕动相关机械传导反应,导致癌症干细胞富集和致瘤性增加。可以利用这些机械感觉联系来提高针对致癌 KRAS 的新兴疗法的敏感性。意义:致癌 KRAS 使结直肠癌细胞能够利用结肠蠕动的机械作用获得恶性收益,而不受其他合作信号的影响。.
{"title":"Oncogenic KRAS Mutations Confer a Unique Mechanotransduction Response to Peristalsis in Colorectal Cancer Cells.","authors":"Abigail J Clevenger, Claudia A Collier, John Paul M Gorley, Sarah Colijn, Maygan K McFarlin, Spencer C Solberg, Scott Kopetz, Amber N Stratman, Shreya A Raghavan","doi":"10.1158/1541-7786.MCR-24-0624","DOIUrl":"10.1158/1541-7786.MCR-24-0624","url":null,"abstract":"<p><p>Colorectal cancer tumors start as polyps on the inner lining of the colorectum, in which they are exposed to the mechanics of peristalsis. Our previous work leveraged a custom-built peristalsis bioreactor to demonstrate that colonic peristalsis led to cancer stem cell enrichment in colorectal cancer cells. However, this malignant mechanotransductive response was confined to select colorectal cancer lines that harbored an oncogenic mutation in the Kirsten rat sarcoma virus (KRAS) gene. In this study, we explored the involvement of activating KRAS mutations on peristalsis-associated mechanotransduction in colorectal cancer. Peristalsis enriched cancer stem cell marker Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in KRAS mutant lines in a Wnt ligand-independent manner. Conversely, LGR5 enrichment in wild-type KRAS lines exposed to peristalsis were minimal. LGR5 enrichment downstream of peristalsis translated to increased tumorigenicity in vivo. Differences in mechanotransduction were apparent via unbiased gene set enrichment analysis, in which many unique pathways were enriched in wild-type versus mutant lines. Peristalsis also triggered β-catenin nuclear localization independent of Wnt ligands, particularly in KRAS mutant lines. The involvement of KRAS was validated via gain and loss of function strategies. Peristalsis-induced β-catenin activation and LGR5 enrichment depended on the activation of the MEK/ERK cascade. Taken together, our results demonstrated that oncogenic KRAS mutations conferred a unique peristalsis-associated mechanotransduction response to colorectal cancer cells, resulting in cancer stem cell enrichment and increased tumorigenicity. These mechanosensory connections can be leveraged in improving the sensitivity of emerging therapies that target oncogenic KRAS. Implications: Oncogenic KRAS empowers colorectal cancer cells to harness the mechanics of colonic peristalsis for malignant gain independent of other cooperating signals.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"128-142"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome Instability Precedes Viral Integration in Human Papillomavirus-Transformed Tonsillar Keratinocytes. 人类乳头状瘤病毒转化的扁桃体角质细胞中病毒整合前的基因组不稳定性
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1158/1541-7786.MCR-24-0604
Kimberly Chan, Christopher Tseng, Emily Milarachi, David Goldrich, Lisa Schneper, Kathryn Sheldon, Cesar Aliaga, Samina Alam, Sreejata Chatterjee, Karam El-Bayoumy, Craig Meyers, David Goldenberg, James R Broach

Approximately 70% of oropharyngeal squamous carcinomas (OPSCC) are associated with human papillomavirus (HPV). Although patients with HPV-positive (HPV+) tumors generally have better outcomes than those with HPV-negative tumors, a subset of HPV+ positive patients do have poor outcomes. Our previous work suggested that tumors with integrated virus exhibit significantly greater genome-wide genomic instability than those with only episomal viral genomes, and patients with HPV+ OPSCC with episomal viral genomes had better outcomes. To explore the causal relation between viral integration and genomic instability, we have examined the time course of viral integration and genetic instability in tonsillar keratinocytes transformed with HPV16. HPV-infected human tonsil keratinocyte cell lines were continuously passaged, and every fifth passage, some cells were retained for genomic analysis. Whole-genome sequencing and optical genomic mapping confirmed that virus integrated in five of six cell lines while remaining episomal in the sixth. In all lines, genome instability occurred during early passages but essentially ceased following viral integration; however, it continued to occur in later passages in the episomal line. To test tumorigenicity of the cell lines, cells were injected subcutaneously into the flanks of nude mice. A cell line with the integrated virus induced tumors following injection in the nude mouse whereas that with the episomal virus did not. Implications: Genomic instability in HPV OPSCC tumors is not the result of viral integration but likely promotes integration. Moreover, transformants with episomal virus seem to be less tumorigenic than those with integrated virus.

大约70%的口咽鳞状细胞癌(OPSCC)与人类乳头瘤病毒(HPV)有关。虽然HPV阳性肿瘤患者的预后通常优于HPV阴性肿瘤患者,但仍有一部分HPV阳性患者预后不佳。我们之前的研究表明,整合病毒的肿瘤比只有表型病毒基因组的肿瘤表现出更大的全基因组不稳定性,而具有表型病毒基因组的HPV+ OPSCC患者的预后更好。为了探索病毒整合与基因组不稳定性之间的因果关系,我们研究了HPV16转化的扁桃体角质细胞中病毒整合和基因不稳定性的时间过程。我们对受 HPV 感染的人扁桃体角质细胞系进行了连续传代,每隔五代保留一些细胞进行基因组分析。全基因组测序和光学基因组图谱证实,病毒在六个细胞系中的五个细胞系中整合,而在第六个细胞系中保持表型。在所有品系中,基因组不稳定性都发生在早期阶段,但在病毒整合后基本停止,但在表型品系的后期阶段继续发生。为了测试细胞系的致瘤性,将细胞皮下注射到裸鼠腹部。带有整合病毒的细胞系在裸鼠注射后诱发肿瘤,而带有表型病毒的细胞系则没有。影响:HPV OPSCC 肿瘤基因组的不稳定性不是病毒整合的结果,但很可能促进了整合。此外,带有表型病毒的转化株似乎比带有整合病毒的转化株致瘤性更低。
{"title":"Genome Instability Precedes Viral Integration in Human Papillomavirus-Transformed Tonsillar Keratinocytes.","authors":"Kimberly Chan, Christopher Tseng, Emily Milarachi, David Goldrich, Lisa Schneper, Kathryn Sheldon, Cesar Aliaga, Samina Alam, Sreejata Chatterjee, Karam El-Bayoumy, Craig Meyers, David Goldenberg, James R Broach","doi":"10.1158/1541-7786.MCR-24-0604","DOIUrl":"10.1158/1541-7786.MCR-24-0604","url":null,"abstract":"<p><p>Approximately 70% of oropharyngeal squamous carcinomas (OPSCC) are associated with human papillomavirus (HPV). Although patients with HPV-positive (HPV+) tumors generally have better outcomes than those with HPV-negative tumors, a subset of HPV+ positive patients do have poor outcomes. Our previous work suggested that tumors with integrated virus exhibit significantly greater genome-wide genomic instability than those with only episomal viral genomes, and patients with HPV+ OPSCC with episomal viral genomes had better outcomes. To explore the causal relation between viral integration and genomic instability, we have examined the time course of viral integration and genetic instability in tonsillar keratinocytes transformed with HPV16. HPV-infected human tonsil keratinocyte cell lines were continuously passaged, and every fifth passage, some cells were retained for genomic analysis. Whole-genome sequencing and optical genomic mapping confirmed that virus integrated in five of six cell lines while remaining episomal in the sixth. In all lines, genome instability occurred during early passages but essentially ceased following viral integration; however, it continued to occur in later passages in the episomal line. To test tumorigenicity of the cell lines, cells were injected subcutaneously into the flanks of nude mice. A cell line with the integrated virus induced tumors following injection in the nude mouse whereas that with the episomal virus did not. Implications: Genomic instability in HPV OPSCC tumors is not the result of viral integration but likely promotes integration. Moreover, transformants with episomal virus seem to be less tumorigenic than those with integrated virus.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"119-127"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intra- and Extrahepatic Cholangiocarcinomas Display Differing Sensitivities to NK Cell Lysis and Modulate NK Cell Function through Shared and Distinct Pathways. 肝内和肝外胆管癌对 NK 细胞溶解的敏感性不同,并通过共同和不同的途径调节 NK 细胞功能。
IF 4.1 2区 医学 Q2 CELL BIOLOGY Pub Date : 2025-02-06 DOI: 10.1158/1541-7786.MCR-24-0299
Ngan Nguyen, Ian C Henrich

Cholangiocarcinoma (CCA) is a rare cancer that arises from the bile duct and is broadly classified by the location of the tumor as either intrahepatic cholangiocarcinoma (iCCA) or extrahepatic cholangiocarcinoma (eCCA). Immunotherapy has revolutionized cancer treatment, yet its utility in CCA has been limited as the tumor microenvironment (TME) in CCA is poorly understood compared with other common cancers. Utilizing previously published transcriptome data, our reanalysis has revealed that CCA has one of the highest relative levels of NK cells, a potent cytotoxic immune cell, compared with other cancers. However, despite iCCA and eCCA having comparable relative levels of NK infiltration, NK cell infiltration only correlated with survival in patients with eCCA. Our subsequent investigation revealed that although iCCA and eCCA profoundly altered NK activity, eCCA had a significantly reduced impact on NK functionality. Whereas iCCA was resistant to long-term NK coculture, eCCA was markedly more sensitive. Moreover, although both iCCA and eCCA dysregulated key NK-activating receptors, eCCA coculture did not impact NKp30 nor NKp44 expression. Furthermore, tumor transcriptome analysis of NKHigh CCA samples revealed a modulation of multiple immune and nonimmune cell types within the TME. Implications: These studies are the first to investigate how iCCA and eCCA impact NK cell functionality through shared and distinct mechanisms and how elevated NK cell infiltration could shape the CCA TME in a subtype-dependent manner.

胆管癌(CCA)是一种来自胆管的罕见癌症,根据肿瘤位置大致可分为肝内癌(iCCA)和肝外癌(eCCA)。免疫疗法给癌症治疗带来了革命性的变化,但由于与其他常见癌症相比,人们对CCA的肿瘤微环境(TME)知之甚少,因此免疫疗法在CCA中的应用受到了限制。利用以前发表的转录组数据,我们重新分析发现,与其他癌症相比,CCA 的自然杀伤(NK)细胞(一种强效细胞毒性免疫细胞)相对水平最高。然而,尽管iCCA和eCCA的NK浸润相对水平相当,但NK细胞浸润只与eCCA患者的存活率相关。我们随后的研究发现,iCCA 和 eCCA 都会严重改变 NK 的活性,而 eCCA 对 NK 功能的影响则明显降低。iCCA 对长期的 NK 协同培养有抵抗力,而 eCCA 则明显更敏感。此外,虽然 iCCA 和 eCCA 都使关键的 NK 激活受体失调,但 eCCA 协同培养并不影响 NKp30 或 NKp44 的表达。此外,对 NKHigh CCA 样本进行的肿瘤转录组分析显示,TME 中的多种免疫和非免疫细胞类型都发生了改变。意义:这些研究首次探讨了 iCCA 和 eCCA 如何通过共同和不同的机制影响 NK 细胞的功能,以及 NK 细胞浸润的增加如何以亚型依赖的方式塑造 CCA TME。
{"title":"Intra- and Extrahepatic Cholangiocarcinomas Display Differing Sensitivities to NK Cell Lysis and Modulate NK Cell Function through Shared and Distinct Pathways.","authors":"Ngan Nguyen, Ian C Henrich","doi":"10.1158/1541-7786.MCR-24-0299","DOIUrl":"10.1158/1541-7786.MCR-24-0299","url":null,"abstract":"<p><p>Cholangiocarcinoma (CCA) is a rare cancer that arises from the bile duct and is broadly classified by the location of the tumor as either intrahepatic cholangiocarcinoma (iCCA) or extrahepatic cholangiocarcinoma (eCCA). Immunotherapy has revolutionized cancer treatment, yet its utility in CCA has been limited as the tumor microenvironment (TME) in CCA is poorly understood compared with other common cancers. Utilizing previously published transcriptome data, our reanalysis has revealed that CCA has one of the highest relative levels of NK cells, a potent cytotoxic immune cell, compared with other cancers. However, despite iCCA and eCCA having comparable relative levels of NK infiltration, NK cell infiltration only correlated with survival in patients with eCCA. Our subsequent investigation revealed that although iCCA and eCCA profoundly altered NK activity, eCCA had a significantly reduced impact on NK functionality. Whereas iCCA was resistant to long-term NK coculture, eCCA was markedly more sensitive. Moreover, although both iCCA and eCCA dysregulated key NK-activating receptors, eCCA coculture did not impact NKp30 nor NKp44 expression. Furthermore, tumor transcriptome analysis of NKHigh CCA samples revealed a modulation of multiple immune and nonimmune cell types within the TME. Implications: These studies are the first to investigate how iCCA and eCCA impact NK cell functionality through shared and distinct mechanisms and how elevated NK cell infiltration could shape the CCA TME in a subtype-dependent manner.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"155-168"},"PeriodicalIF":4.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Cancer Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1