Metaproteomic portrait of the healthy human gut microbiota.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY npj Biofilms and Microbiomes Pub Date : 2024-06-28 DOI:10.1038/s41522-024-00526-4
Alessandro Tanca, Antonio Palomba, Giovanni Fiorito, Marcello Abbondio, Daniela Pagnozzi, Sergio Uzzau
{"title":"Metaproteomic portrait of the healthy human gut microbiota.","authors":"Alessandro Tanca, Antonio Palomba, Giovanni Fiorito, Marcello Abbondio, Daniela Pagnozzi, Sergio Uzzau","doi":"10.1038/s41522-024-00526-4","DOIUrl":null,"url":null,"abstract":"<p><p>Gut metaproteomics can provide direct evidence of microbial functions actively expressed in the colonic environments, contributing to clarify the role of the gut microbiota in human physiology. In this study, we re-analyzed 10 fecal metaproteomics datasets of healthy individuals from different continents and countries, with the aim of identifying stable and variable gut microbial functions and defining the contribution of specific bacterial taxa to the main metabolic pathways. The \"core\" metaproteome included 182 microbial functions and 83 pathways that were identified in all individuals analyzed. Several enzymes involved in glucose and pyruvate metabolism, along with glutamate dehydrogenase, acetate kinase, elongation factors G and Tu and DnaK, were the proteins with the lowest abundance variability in the cohorts under study. On the contrary, proteins involved in chemotaxis, response to stress and cell adhesion were among the most variable functions. Random-effect meta-analysis of correlation trends between taxa, functions and pathways revealed key ecological and molecular associations within the gut microbiota. The contribution of specific bacterial taxa to the main biological processes was also investigated, finding that Faecalibacterium is the most stable genus and the top contributor to anti-inflammatory butyrate production in the healthy gut microbiota. Active production of other mucosal immunomodulators facilitating host tolerance was observed, including Roseburia flagellin and lipopolysaccharide biosynthetic enzymes expressed by members of Bacteroidota. Our study provides a detailed picture of the healthy human gut microbiota, contributing to unveil its functional mechanisms and its relationship with nutrition, immunity, and environmental stressors.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214629/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00526-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gut metaproteomics can provide direct evidence of microbial functions actively expressed in the colonic environments, contributing to clarify the role of the gut microbiota in human physiology. In this study, we re-analyzed 10 fecal metaproteomics datasets of healthy individuals from different continents and countries, with the aim of identifying stable and variable gut microbial functions and defining the contribution of specific bacterial taxa to the main metabolic pathways. The "core" metaproteome included 182 microbial functions and 83 pathways that were identified in all individuals analyzed. Several enzymes involved in glucose and pyruvate metabolism, along with glutamate dehydrogenase, acetate kinase, elongation factors G and Tu and DnaK, were the proteins with the lowest abundance variability in the cohorts under study. On the contrary, proteins involved in chemotaxis, response to stress and cell adhesion were among the most variable functions. Random-effect meta-analysis of correlation trends between taxa, functions and pathways revealed key ecological and molecular associations within the gut microbiota. The contribution of specific bacterial taxa to the main biological processes was also investigated, finding that Faecalibacterium is the most stable genus and the top contributor to anti-inflammatory butyrate production in the healthy gut microbiota. Active production of other mucosal immunomodulators facilitating host tolerance was observed, including Roseburia flagellin and lipopolysaccharide biosynthetic enzymes expressed by members of Bacteroidota. Our study provides a detailed picture of the healthy human gut microbiota, contributing to unveil its functional mechanisms and its relationship with nutrition, immunity, and environmental stressors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
健康人体肠道微生物群的元蛋白质组图谱。
肠道元蛋白质组学可以提供结肠环境中积极表达的微生物功能的直接证据,有助于阐明肠道微生物群在人类生理学中的作用。在这项研究中,我们重新分析了来自不同大洲和国家的 10 个健康人的粪便元蛋白质组数据集,目的是确定稳定和可变的肠道微生物功能,并定义特定细菌类群对主要代谢途径的贡献。核心 "元蛋白质组包括 182 种微生物功能和 83 条通路,这些功能和通路在所有分析对象中都得到了确定。参与葡萄糖和丙酮酸代谢的几种酶,以及谷氨酸脱氢酶、乙酸激酶、伸长因子 G 和 Tu 以及 DnaK,是所研究群体中丰度变化最小的蛋白质。相反,参与趋化、应激反应和细胞粘附的蛋白质的功能变化最大。对分类群、功能和途径之间相关趋势的随机效应荟萃分析揭示了肠道微生物群中的关键生态和分子关联。研究还调查了特定细菌类群对主要生物过程的贡献,发现粪杆菌是最稳定的菌属,也是健康肠道微生物群中产生抗炎丁酸盐的最大贡献者。研究还观察到了其他促进宿主耐受性的粘膜免疫调节剂的活性生产,包括由类菌群成员表达的蔷薇鞭毛菌素和脂多糖生物合成酶。我们的研究提供了健康人体肠道微生物群的详细情况,有助于揭示其功能机制及其与营养、免疫和环境压力因素的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
期刊最新文献
Large-scale metagenomic assembly provide new insights into the genetic evolution of gut microbiomes in plateau ungulates. Microbial diversity and secondary metabolism potential in relation to dark alterations in Paleolithic Lascaux Cave. Combating biofilm-associated Klebsiella pneumoniae infections using a bovine microbial enzyme. Kinetics of imidazole propionate from orally delivered histidine in mice and humans. Autoinducer-2 relieves soil stress-induced dormancy of Bacillus velezensis by modulating sporulation signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1