{"title":"Auto-evaluation of skull radiograph accuracy using unsupervised anomaly detection.","authors":"Haruyuki Watanabe, Yuina Ezawa, Eri Matsuyama, Yohan Kondo, Norio Hayashi, Sho Maruyama, Toshihiro Ogura, Masayuki Shimosegawa","doi":"10.3233/XST-230431","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.</p><p><strong>Objective: </strong>To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.</p><p><strong>Methods: </strong>Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.</p><p><strong>Results: </strong>The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.</p><p><strong>Conclusions: </strong>Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Radiography plays an important role in medical care, and accurate positioning is essential for providing optimal quality images. Radiographs with insufficient diagnostic value are rejected, and retakes are required. However, determining the suitability of retaking radiographs is a qualitative evaluation.
Objective: To evaluate skull radiograph accuracy automatically using an unsupervised learning-based autoencoder (AE) and a variational autoencoder (VAE). In this study, we eliminated visual qualitative evaluation and used unsupervised learning to identify skull radiography retakes from the quantitative evaluation.
Methods: Five skull phantoms were imaged on radiographs, and 1,680 images were acquired. These images correspond to two categories: normal images captured at appropriate positions and images captured at inappropriate positions. This study verified the discriminatory ability of skull radiographs using anomaly detection methods.
Results: The areas under the curves for AE and VAE were 0.7060 and 0.6707, respectively, in receiver operating characteristic analysis. Our proposed method showed a higher discrimination ability than those of previous studies which had an accuracy of 52%.
Conclusions: Our findings suggest that the proposed method has high classification accuracy in determining the suitability of retaking skull radiographs. Automation of optimal image consideration, whether or not to retake radiographs, contributes to improving operational efficiency in busy X-ray imaging operations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.