Rafał L Górny, Małgorzata Gołofit-Szymczak, Andrzej Pawlak, Anna Ławniczek-Wałczyk, Marcin Cyprowski, Agata Stobnicka, Magdalena Płocińska, Joanna Kowalska
{"title":"Effectiveness of UV-C radiation in inactivation of microorganisms on materials with different surface structures.","authors":"Rafał L Górny, Małgorzata Gołofit-Szymczak, Andrzej Pawlak, Anna Ławniczek-Wałczyk, Marcin Cyprowski, Agata Stobnicka, Magdalena Płocińska, Joanna Kowalska","doi":"10.26444/aaem/189695","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and objective: </strong>Ultraviolet light in the UV-C band is known as germicidal radiation and was widely used for both sterilization of the equipment and creation of a sterile environment. The aim of the study is to assess the effectiveness of inactivation of microorganisms deposited on surfaces with various textures by UV-C radiation disinfection devices.</p><p><strong>Material and methods: </strong>Five microorganisms (3 bacteria, virus, and fungus) deposited on metal, plastic, and glass surfaces with smooth and rough textures were irradiated with UV-C light emitted by low-pressure mercury lamp and ultraviolet emitting diodes (LEDs), from a distance of 0.5 m, 1 m, and 1.5 m to check their survivability after 20-minute exposure.</p><p><strong>Results and conclusions: </strong>Both tested UV-C sources were effective in inactivation of microorganisms; however, LED emitter was more efficient in this respect than the mercury lamp. The survival rate of microorganisms depended on the UV-C dose, conditioned by the distance from UV-C source being the highest at 0.5 m and the lowest at 1.5 m. For the tested microorganisms, the highest survival rate after UV-C irradiation was usually visible on glass and plastic surfaces. This observation should be considered in all environments where the type of material (from which the elements of technical equipment are manufactured and may be contaminated by specific activities) is important for maintaining the proper level of hygiene and avoiding the unwanted and uncontrolled spread of microbiological pollution.</p>","PeriodicalId":50970,"journal":{"name":"Annals of Agricultural and Environmental Medicine","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural and Environmental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26444/aaem/189695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction and objective: Ultraviolet light in the UV-C band is known as germicidal radiation and was widely used for both sterilization of the equipment and creation of a sterile environment. The aim of the study is to assess the effectiveness of inactivation of microorganisms deposited on surfaces with various textures by UV-C radiation disinfection devices.
Material and methods: Five microorganisms (3 bacteria, virus, and fungus) deposited on metal, plastic, and glass surfaces with smooth and rough textures were irradiated with UV-C light emitted by low-pressure mercury lamp and ultraviolet emitting diodes (LEDs), from a distance of 0.5 m, 1 m, and 1.5 m to check their survivability after 20-minute exposure.
Results and conclusions: Both tested UV-C sources were effective in inactivation of microorganisms; however, LED emitter was more efficient in this respect than the mercury lamp. The survival rate of microorganisms depended on the UV-C dose, conditioned by the distance from UV-C source being the highest at 0.5 m and the lowest at 1.5 m. For the tested microorganisms, the highest survival rate after UV-C irradiation was usually visible on glass and plastic surfaces. This observation should be considered in all environments where the type of material (from which the elements of technical equipment are manufactured and may be contaminated by specific activities) is important for maintaining the proper level of hygiene and avoiding the unwanted and uncontrolled spread of microbiological pollution.
期刊介绍:
All papers within the scope indicated by the following sections of the journal may be submitted:
Biological agents posing occupational risk in agriculture, forestry, food industry and wood industry and diseases caused by these agents (zoonoses, allergic and immunotoxic diseases).
Health effects of chemical pollutants in agricultural areas , including occupational and non-occupational effects of agricultural chemicals (pesticides, fertilizers) and effects of industrial disposal (heavy metals, sulphur, etc.) contaminating the atmosphere, soil and water.
Exposure to physical hazards associated with the use of machinery in agriculture and forestry: noise, vibration, dust.
Prevention of occupational diseases in agriculture, forestry, food industry and wood industry.
Work-related accidents and injuries in agriculture, forestry, food industry and wood industry: incidence, causes, social aspects and prevention.
State of the health of rural communities depending on various factors: social factors, accessibility of medical care, etc.