{"title":"Proteomics and metabolomics analysis of American shad (Alosa sapidissima) liver responses to heat stress","authors":"Mingkun Luo , Bingbing Feng , Wenbin Zhu , Zhengyuan Liang , Wei Xu , Jianjun Fu , Linghong Miao , Zaijie Dong","doi":"10.1016/j.cbpa.2024.111686","DOIUrl":null,"url":null,"abstract":"<div><p>The dramatic changes in the global climate pose a major threat to the survival of many organisms, including fish. To date, the regulatory mechanisms behind the physiological responses of fish to temperature changes have been studied, and a comprehensive analysis of the regulatory mechanisms of temperature tolerance will help to propose effective strategies for fish to cope with global warming. In this study, we investigated the expression profiles of proteins and metabolites in liver tissues of American shad (<em>Alosa sapidissima</em>) corresponding to different water temperatures (24 °C, 27 °C and 30 °C) at various times (1-month intervals) under natural culture conditions. Proteomic analysis showed that the expression levels of the heat shock protein family (e.g. HSPE1, HSP70, HSPA5 and HSPA.1) increase significantly with temperature and that many differentially expressed proteins were highly enriched especially in pathways related to the endoplasmic reticulum, oxidative phosphorylation and glycolysis/gluconeogenesis processes. In addition, the results of conjoint metabolomics and proteomics analysis suggested that the contents of several important amino acids and chemical compounds, including L-serine, L-isoleucine, L-cystine, choline and betaine, changed significantly under high-temperature environmental stress, affecting the metabolic levels of starch, amino acid and glucose, which is thought to represent a possible energy conservation method for <em>A. sapidissima</em> to cope with rapid changes in external temperature. In summary, our findings demonstrate that living under high temperatures for a long period of time leads to different physiological defense responses in <em>A. sapidissima</em>, which provides some new ideas for analyzing the molecular regulatory patterns of adaptation to high temperature and also provides a theoretical basis for the subsequent improvement of fish culture in response to global warming.</p></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"296 ","pages":"Article 111686"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643324001132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dramatic changes in the global climate pose a major threat to the survival of many organisms, including fish. To date, the regulatory mechanisms behind the physiological responses of fish to temperature changes have been studied, and a comprehensive analysis of the regulatory mechanisms of temperature tolerance will help to propose effective strategies for fish to cope with global warming. In this study, we investigated the expression profiles of proteins and metabolites in liver tissues of American shad (Alosa sapidissima) corresponding to different water temperatures (24 °C, 27 °C and 30 °C) at various times (1-month intervals) under natural culture conditions. Proteomic analysis showed that the expression levels of the heat shock protein family (e.g. HSPE1, HSP70, HSPA5 and HSPA.1) increase significantly with temperature and that many differentially expressed proteins were highly enriched especially in pathways related to the endoplasmic reticulum, oxidative phosphorylation and glycolysis/gluconeogenesis processes. In addition, the results of conjoint metabolomics and proteomics analysis suggested that the contents of several important amino acids and chemical compounds, including L-serine, L-isoleucine, L-cystine, choline and betaine, changed significantly under high-temperature environmental stress, affecting the metabolic levels of starch, amino acid and glucose, which is thought to represent a possible energy conservation method for A. sapidissima to cope with rapid changes in external temperature. In summary, our findings demonstrate that living under high temperatures for a long period of time leads to different physiological defense responses in A. sapidissima, which provides some new ideas for analyzing the molecular regulatory patterns of adaptation to high temperature and also provides a theoretical basis for the subsequent improvement of fish culture in response to global warming.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.