The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips.

IF 2.4 3区 医学 Q3 NEUROSCIENCES Jaro-Journal of the Association for Research in Otolaryngology Pub Date : 2024-08-01 Epub Date: 2024-06-27 DOI:10.1007/s10162-024-00955-0
Shawn S Goodman, Shannon M Lefler, Choongheon Lee, John J Guinan, Jeffery T Lichtenhan
{"title":"The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips.","authors":"Shawn S Goodman, Shannon M Lefler, Choongheon Lee, John J Guinan, Jeffery T Lichtenhan","doi":"10.1007/s10162-024-00955-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tone-pip-evoked otoacoustic emissions (PEOAEs) are transient-evoked otoacoustic emissions (OAEs) that are hypothesized to originate from reflection of energy near the best-frequency (BF) cochlear place of the stimulus frequency. However, individual PEOAEs have energy with a wide range of delays. We sought to determine whether some PEOAE energy is consistent with having been generated far from BF.</p><p><strong>Methods: </strong>PEOAEs from 35 and 47 dB SPL tone pips were obtained by removing pip-stimulus energy by subtracting the ear-canal sound pressure from scaled-down 59 dB SPL tone pips (which evoke relatively small OAEs). PEOAE delays were measured at each peak in the PEOAE absolute-value waveforms. While measuring PEOAEs and auditory-nerve compound action potentials (CAPs), amplification was blocked sequentially from apex to base by cochlear salicylate perfusion. The perfusion time when a CAP was reduced identified when the perfusion reached the tone-pip BF place. The perfusion times when each PEOAE peak was reduced identified where along the cochlea it received cochlear amplification. PEOAEs and CAPs were measured simultaneously using one pip frequency in each ear (1.4 to 4 kHz across 16 ears).</p><p><strong>Results: </strong>Most PEOAE peaks received amplification primarily between the BF place and 1-2 octaves basal of the BF place. PEOAE peaks with short delays received amplification basal of BF place. PEOAE peaks with longer delays sometimes received amplification apical of BF place, consistent with previous stimulus-frequency-OAE results.</p><p><strong>Conclusion: </strong>PEOAEs provide information about cochlear amplification primarily within ~ 1.5 octave of the tone-pip BF place, not about regions > 3 octaves basal of BF.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"363-376"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-024-00955-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Tone-pip-evoked otoacoustic emissions (PEOAEs) are transient-evoked otoacoustic emissions (OAEs) that are hypothesized to originate from reflection of energy near the best-frequency (BF) cochlear place of the stimulus frequency. However, individual PEOAEs have energy with a wide range of delays. We sought to determine whether some PEOAE energy is consistent with having been generated far from BF.

Methods: PEOAEs from 35 and 47 dB SPL tone pips were obtained by removing pip-stimulus energy by subtracting the ear-canal sound pressure from scaled-down 59 dB SPL tone pips (which evoke relatively small OAEs). PEOAE delays were measured at each peak in the PEOAE absolute-value waveforms. While measuring PEOAEs and auditory-nerve compound action potentials (CAPs), amplification was blocked sequentially from apex to base by cochlear salicylate perfusion. The perfusion time when a CAP was reduced identified when the perfusion reached the tone-pip BF place. The perfusion times when each PEOAE peak was reduced identified where along the cochlea it received cochlear amplification. PEOAEs and CAPs were measured simultaneously using one pip frequency in each ear (1.4 to 4 kHz across 16 ears).

Results: Most PEOAE peaks received amplification primarily between the BF place and 1-2 octaves basal of the BF place. PEOAE peaks with short delays received amplification basal of BF place. PEOAE peaks with longer delays sometimes received amplification apical of BF place, consistent with previous stimulus-frequency-OAE results.

Conclusion: PEOAEs provide information about cochlear amplification primarily within ~ 1.5 octave of the tone-pip BF place, not about regions > 3 octaves basal of BF.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中频音点诱发耳蜗声发射的起源
目的:音调-嗓音诱发的耳声发射(PEOAEs)是一种瞬时诱发的耳声发射(OAEs),据推测其起源于刺激频率的最佳频率(BF)耳蜗位置附近的能量反射。然而,单个 PEOAEs 的能量延迟范围很广。我们试图确定某些 PEOAE 能量是否与远离最佳频率(BF)产生的能量一致:方法:通过减去按比例缩小的 59 dB SPL 音调点(可诱发相对较小的 OAE)的耳道声压,去除点刺激能量,从而获得来自 35 和 47 dB SPL 音调点的 PEOAE。在 PEOAE 绝对值波形的每个峰值处测量 PEOAE 延迟。在测量 PEOAEs 和听觉神经复合动作电位(CAPs)时,通过耳蜗水杨酸盐灌注从顶部到底部依次阻断放大。当灌注到达音点 BF 处时,确定 CAP 降低的灌注时间。每个 PEOAE 峰值降低时的灌注时间可确定其在耳蜗的哪个位置接受耳蜗放大。PEOAE 和 CAP 同时测量,每只耳朵使用一个音点频率(16 只耳朵的频率为 1.4 至 4 kHz):大多数 PEOAE 峰值主要在 BF 位置和 BF 位置基底 1-2 个八度之间得到放大。延迟时间较短的 PEOAE 峰值在 BF 位置基底处得到放大。延迟时间较长的 PEOAE 峰有时会在 BF 位置的顶端得到放大,这与之前的刺激频率-OAE 结果一致:结论:PEOAE 提供的耳蜗放大信息主要集中在音点 BF 位置 ~ 1.5 个八度音程的范围内,而不是 BF 基底 3 个八度音程以上的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
期刊最新文献
Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study. Comparing Patient-Specific Variations in Intra-Cochlear Neural Health Estimated Using Psychophysical Thresholds and Panoramic Electrically Evoked Compound Action Potentials (PECAPs). What Do Mismatch Negativity (MMN) Responses Tell Us About Tinnitus? Eric Daniel Young. Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1