Pub Date : 2024-11-07DOI: 10.1007/s10162-024-00968-9
Yiwei Xia, George Samaras, Julien Meaud
Purpose: A theoretical framework based on coherent reflection and filter theory predicts that the phase-gradient delays of stimulus frequency otoacoustic emissions (SFOAEs) are correlated with tuning sharpness in the mammalian cochlea. In this paper, we use a computational model of the cochlea to test this theory and to evaluate how SFOAE phase-gradient delays may be used to estimate the sharpness of cochlear tuning.
Methods: This study is based on a physiologically motivated model which has been previously shown to predict key aspects of cochlear micromechanics. Cochlear roughness is introduced to model the reflection mechanism which underlies SFOAE generation. We then examine how varying the values of key model parameters or of the sound pressure level of the stimulus affects the relation between cochlear tuning and SFOAE delays. Finally, we quantify the ability of model simulations of SFOAE phase-gradient delays to provide reliable estimates of the tuning sharpness of the model.
Results: We find that variations of model parameters that cause significant broadening of basilar membrane (BM) tuning typically give rise to a sizeable reduction in SFOAE phase-gradient delays. However, some changes in model parameters may cause a significant broadening of BM tuning with only a moderate decrease in SFOAE delays. SFOAE delays can be used to estimate the tuning sharpness of the model with reasonable accuracy only in cases where broadening of cochlear tuning is associated with a significant reduction in SFOAE delays.
Conclusion: The numerical results provide key insights about the correlations between cochlear tuning and SFOAE delays.
{"title":"Evaluating the Correlation Between Stimulus Frequency Otoacoustic Emission Group Delays and Tuning Sharpness in a Cochlear Model.","authors":"Yiwei Xia, George Samaras, Julien Meaud","doi":"10.1007/s10162-024-00968-9","DOIUrl":"https://doi.org/10.1007/s10162-024-00968-9","url":null,"abstract":"<p><strong>Purpose: </strong>A theoretical framework based on coherent reflection and filter theory predicts that the phase-gradient delays of stimulus frequency otoacoustic emissions (SFOAEs) are correlated with tuning sharpness in the mammalian cochlea. In this paper, we use a computational model of the cochlea to test this theory and to evaluate how SFOAE phase-gradient delays may be used to estimate the sharpness of cochlear tuning.</p><p><strong>Methods: </strong>This study is based on a physiologically motivated model which has been previously shown to predict key aspects of cochlear micromechanics. Cochlear roughness is introduced to model the reflection mechanism which underlies SFOAE generation. We then examine how varying the values of key model parameters or of the sound pressure level of the stimulus affects the relation between cochlear tuning and SFOAE delays. Finally, we quantify the ability of model simulations of SFOAE phase-gradient delays to provide reliable estimates of the tuning sharpness of the model.</p><p><strong>Results: </strong>We find that variations of model parameters that cause significant broadening of basilar membrane (BM) tuning typically give rise to a sizeable reduction in SFOAE phase-gradient delays. However, some changes in model parameters may cause a significant broadening of BM tuning with only a moderate decrease in SFOAE delays. SFOAE delays can be used to estimate the tuning sharpness of the model with reasonable accuracy only in cases where broadening of cochlear tuning is associated with a significant reduction in SFOAE delays.</p><p><strong>Conclusion: </strong>The numerical results provide key insights about the correlations between cochlear tuning and SFOAE delays.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1007/s10162-024-00965-y
Alberto Recio-Spinoso, John S Oghalai, Mario A Ruggero
Purpose: The goal of this research was to record sound-evoked vibrations in the organ of Corti at the apex of the intact cochlea of the chinchilla, an animal with a frequency hearing range similar to that of humans.
Methods: Twelve adult anesthetized chinchillas of either sex were used. Measurements of sound-evoked vibrations of the intact organ of Corti (OoC) were performed using optical coherence tomography (OCT). Acoustic stimuli consisted of single tones of 1-s duration. OoC vibrations were recorded using a Telesto Spectral Domain OCT system (Thorlabs GmbH, Germany) and ThorImage® OCT version 5.4.2 (Thorlabs GmbH, Germany). Further analysis of the output of the ThorImage software was performed by ad hoc programs written using Matlab® R2020b.
Results: Recordings were performed at several OoC sites extending from the Hensen's cell region to the vicinity of the basilar membrane (BM). The measurement angle between the optical axis of the OCT system and the BM was approximately 45°. Under that experimental condition, delays among the different OoC locations indicate that BM motion occurs earlier than at other sites. At all OoC sites, sound-evoked vibrations grow nonlinearly with stimulus level at compressive rates. The sharpness of tuning of OoC vibrations increases with stimulus level and death. Iso-velocity curves as a function of frequency are well-tuned around 500 Hz and closely resemble threshold tuning curves of chinchilla auditory-nerve fibers with similar characteristic frequencies.
Conclusions: The nonlinear processing of sounds at the apex of the chinchilla cochlea differs significantly from the processing of sounds at the base of the cochlea in the same species.
{"title":"Tuning and Timing of Organ of Corti Vibrations at the Apex of the Intact Chinchilla Cochlea.","authors":"Alberto Recio-Spinoso, John S Oghalai, Mario A Ruggero","doi":"10.1007/s10162-024-00965-y","DOIUrl":"https://doi.org/10.1007/s10162-024-00965-y","url":null,"abstract":"<p><strong>Purpose: </strong>The goal of this research was to record sound-evoked vibrations in the organ of Corti at the apex of the intact cochlea of the chinchilla, an animal with a frequency hearing range similar to that of humans.</p><p><strong>Methods: </strong>Twelve adult anesthetized chinchillas of either sex were used. Measurements of sound-evoked vibrations of the intact organ of Corti (OoC) were performed using optical coherence tomography (OCT). Acoustic stimuli consisted of single tones of 1-s duration. OoC vibrations were recorded using a Telesto Spectral Domain OCT system (Thorlabs GmbH, Germany) and ThorImage® OCT version 5.4.2 (Thorlabs GmbH, Germany). Further analysis of the output of the ThorImage software was performed by ad hoc programs written using Matlab® R2020b.</p><p><strong>Results: </strong>Recordings were performed at several OoC sites extending from the Hensen's cell region to the vicinity of the basilar membrane (BM). The measurement angle between the optical axis of the OCT system and the BM was approximately 45°. Under that experimental condition, delays among the different OoC locations indicate that BM motion occurs earlier than at other sites. At all OoC sites, sound-evoked vibrations grow nonlinearly with stimulus level at compressive rates. The sharpness of tuning of OoC vibrations increases with stimulus level and death. Iso-velocity curves as a function of frequency are well-tuned around 500 Hz and closely resemble threshold tuning curves of chinchilla auditory-nerve fibers with similar characteristic frequencies.</p><p><strong>Conclusions: </strong>The nonlinear processing of sounds at the apex of the chinchilla cochlea differs significantly from the processing of sounds at the base of the cochlea in the same species.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-21DOI: 10.1007/s10162-024-00967-w
Ashley Scott Patterson, Joseph Dugdale, Alaa Koleilat, Anna Krauss, Gabriel A Hernandez-Herrera, Jasmine G Wallace, Cassidy Petree, Gaurav K Varshney, Lisa A Schimmenti
Purpose: Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43.
Methods: To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa-/- loss of function mutant tc320b (p.Y846X) and cdh23-/- loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity.
Results: Five-day post fertilization (5dpf) myo7aa-/- and cdh23-/- larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes.
Conclusion: These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.
目的:活力染料可使活体细胞可视化而不会造成组织损伤,是研究活体斑马鱼和其他脊椎动物侧线和内耳毛细胞的有用工具。FM1-43、YO-PRO-1 和 DASPEI 是常用于观察毛细胞的三种重要染料。虽然已经确定 FM1-43 通过机械电转导(MET)通道进入斑马鱼和其他生物的毛细胞,但 YO-PRO-1 和 DASPEI 进入毛细胞的机制尚未确定,尽管它们已被广泛使用。我们假设 YO-PRO-1 和 DASPEI 进入斑马鱼毛细胞与 FM1-43 类似,都依赖于 MET 通道的摄取:为了验证这一假设,我们采用了基因和药物方法来阻断 MET 通道的功能。我们用两种不同的机械传导缺陷斑马鱼品系,特别是 myo7aa-/- 功能缺失突变体 tc320b(p.Y846X)和 cdh23-/- 功能缺失突变体(c.570-571del)进行了基于基因的 MET 通道检测。用氯化钆(III)(Gad(III))进行了药理学检测,该化合物可暂时阻断机械传导活性:结果:受精后五天(5dpf)的myo7aa-/-和cdh23-/-幼体在与FM1-43、YO-PRO-1和DASPEI一起孵育时,对每种重要染料的吸收都几乎为零。用 Gad(III)处理野生型斑马鱼幼体可显著减少对 FM1-43、YO-PRO-1 和 DASPEI 生命染料的吸收:这些结果表明,YO-PRO-1 和 DASPEI 进入斑马鱼毛细胞与 FM1-43 类似,都依赖于 MET 通道。这一知识扩展了可用于评估斑马鱼和其他脊椎动物毛细胞功能模型中机械传导和 MET 通道功能的重要染料的范围。
{"title":"Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells.","authors":"Ashley Scott Patterson, Joseph Dugdale, Alaa Koleilat, Anna Krauss, Gabriel A Hernandez-Herrera, Jasmine G Wallace, Cassidy Petree, Gaurav K Varshney, Lisa A Schimmenti","doi":"10.1007/s10162-024-00967-w","DOIUrl":"https://doi.org/10.1007/s10162-024-00967-w","url":null,"abstract":"<p><strong>Purpose: </strong>Vital dyes allow the visualization of cells in vivo without causing tissue damage, making them a useful tool for studying lateral line and inner ear hair cells in living zebrafish and other vertebrates. FM1-43, YO-PRO-1, and DASPEI are three vital dyes commonly used for hair cell visualization. While it has been established that FM1-43 enters hair cells of zebrafish and other organisms through the mechanoelectrical transduction (MET) channel, the mechanism of entry into hair cells for YO-PRO-1 and DASPEI has not been established despite widespread use. We hypothesize that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel uptake dependent similar to FM1-43.</p><p><strong>Methods: </strong>To test this hypothesis, we used both genetic and pharmacologic means to block MET channel function. Genetic based MET channel assays were conducted with two different mechanotransduction defective zebrafish lines, specifically the myo7aa<sup>-/-</sup> loss of function mutant tc320b (p.Y846X) and cdh23<sup>-/-</sup> loss of function mutant (c.570-571del). Pharmacologic assays were performed with Gadolinium(III) Chloride (Gad(III)), a compound that can temporarily block mechanotransduction activity.</p><p><strong>Results: </strong>Five-day post fertilization (5dpf) myo7aa<sup>-/-</sup> and cdh23<sup>-/-</sup> larvae incubated with FM1-43, YO-PRO-1, and DASPEI all showed nearly absent uptake of each vital dye. Treatment of wildtype zebrafish larvae with Gad(III) significantly reduces uptake of FM1-43, YO-PRO-1, and DASPEI vital dyes.</p><p><strong>Conclusion: </strong>These results indicate that YO-PRO-1 and DASPEI entry into zebrafish hair cells is MET channel dependent similar to FM1-43. This knowledge expands the repertoire of vital dyes that can be used to assess mechanotransduction and MET channel function in zebrafish and other vertebrate models of hair cell function.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1007/s10162-024-00966-x
Charlotte Garcia, Charlotte Morse-Fortier, François Guérit, Scott Hislop, Tobias Goehring, Robert P Carlyon, Julie G Arenberg
Purpose: For some cochlear implants (CIs), it is possible to focus electrical stimulation by partially returning current from the active electrode to nearby, intra-cochlear electrodes (partial tripolar (pTP) stimulation). Another method achieves the opposite: "blurring" by stimulating multiple electrodes simultaneously. The Panoramic ECAP (PECAP) method provides a platform to investigate their effects in detail by measuring electrically evoked compound action potentials and estimating current spread and neural responsiveness along the length of the CI electrode array. We investigate how sharpening and broadening the electrical current spread are reflected in PECAP estimates.
Methods: PECAP measurements were recorded at most comfortable level in 12 ears of Advanced Bionics CI users. Focused thresholds were also determined. For the electrodes with the highest and lowest focused thresholds, additional PECAP measurements were recorded while stimulating in pTP mode and in "blurred" mode with 3 or 5 adjacent electrodes simultaneously stimulated. Current spread and neural responsiveness were then estimated along the electrode array using PECAP.
Results: PECAP revealed increased current spread estimates across participants for blurred stimulation of the targeted electrodes towards the apex of the cochlea. Variable results for pTP stimulation were found, with two of eight ears appearing to drive a small group-level effect of increased current spread.
Conclusion: When stimulating multiple electrodes simultaneously, PECAP detected localized increases in current spread towards the apex (but not the base) of the cochlea. pTP stimulation showed mixed effects on PECAP current spread estimates. These findings are in line with behavioral speech perception studies and have implications for cochlear implant optimization.
{"title":"Investigating the Effect of Blurring and Focusing Current in Cochlear Implant Users with the Panoramic ECAP Method.","authors":"Charlotte Garcia, Charlotte Morse-Fortier, François Guérit, Scott Hislop, Tobias Goehring, Robert P Carlyon, Julie G Arenberg","doi":"10.1007/s10162-024-00966-x","DOIUrl":"https://doi.org/10.1007/s10162-024-00966-x","url":null,"abstract":"<p><strong>Purpose: </strong>For some cochlear implants (CIs), it is possible to focus electrical stimulation by partially returning current from the active electrode to nearby, intra-cochlear electrodes (partial tripolar (pTP) stimulation). Another method achieves the opposite: \"blurring\" by stimulating multiple electrodes simultaneously. The Panoramic ECAP (PECAP) method provides a platform to investigate their effects in detail by measuring electrically evoked compound action potentials and estimating current spread and neural responsiveness along the length of the CI electrode array. We investigate how sharpening and broadening the electrical current spread are reflected in PECAP estimates.</p><p><strong>Methods: </strong>PECAP measurements were recorded at most comfortable level in 12 ears of Advanced Bionics CI users. Focused thresholds were also determined. For the electrodes with the highest and lowest focused thresholds, additional PECAP measurements were recorded while stimulating in pTP mode and in \"blurred\" mode with 3 or 5 adjacent electrodes simultaneously stimulated. Current spread and neural responsiveness were then estimated along the electrode array using PECAP.</p><p><strong>Results: </strong>PECAP revealed increased current spread estimates across participants for blurred stimulation of the targeted electrodes towards the apex of the cochlea. Variable results for pTP stimulation were found, with two of eight ears appearing to drive a small group-level effect of increased current spread.</p><p><strong>Conclusion: </strong>When stimulating multiple electrodes simultaneously, PECAP detected localized increases in current spread towards the apex (but not the base) of the cochlea. pTP stimulation showed mixed effects on PECAP current spread estimates. These findings are in line with behavioral speech perception studies and have implications for cochlear implant optimization.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1007/s10162-024-00964-z
Paul B Manis
{"title":"Eric Daniel Young.","authors":"Paul B Manis","doi":"10.1007/s10162-024-00964-z","DOIUrl":"https://doi.org/10.1007/s10162-024-00964-z","url":null,"abstract":"","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-13DOI: 10.1007/s10162-024-00960-3
Tobias Kleinjung, Nicole Peter, Martin Schecklmann, Berthold Langguth
Tinnitus, the perception of sound without an external source, affects 15% of the population, with 2.4% experiencing significant distress. In this review, we summarize the current state of knowledge about tinnitus management with a particular focus on the translation into clinical practice. In the first section, we analyze shortcomings, knowledge gaps, and challenges in the field of tinnitus research. Then, we highlight the relevance of the diagnostic process to account for tinnitus heterogeneity and to identify all relevant aspects of the tinnitus in an individual patient, such as etiological aspects, pathophysiological mechanisms, factors that contribute most to suffering, and comorbidities. In the next section, we review available treatment options, including counselling, cognitive-behavioral therapy (CBT), hearing aids and cochlear implants for patients with a relevant hearing loss, sound generators, novel auditory stimulation approaches, tinnitus retraining therapy (TRT), pharmacological treatment, neurofeedback, brain stimulation, bimodal stimulation, Internet- and app-based digital approaches, and alternative treatment approaches. The evidence for the effectiveness of the various treatment interventions varies considerably. We also discuss differences in current respective guideline recommendations and close with a discussion of how current pathophysiological knowledge, latest scientific evidence, and patient perspectives can be translated in patient-centered care.
{"title":"The Current State of Tinnitus Diagnosis and Treatment: a Multidisciplinary Expert Perspective.","authors":"Tobias Kleinjung, Nicole Peter, Martin Schecklmann, Berthold Langguth","doi":"10.1007/s10162-024-00960-3","DOIUrl":"10.1007/s10162-024-00960-3","url":null,"abstract":"<p><p>Tinnitus, the perception of sound without an external source, affects 15% of the population, with 2.4% experiencing significant distress. In this review, we summarize the current state of knowledge about tinnitus management with a particular focus on the translation into clinical practice. In the first section, we analyze shortcomings, knowledge gaps, and challenges in the field of tinnitus research. Then, we highlight the relevance of the diagnostic process to account for tinnitus heterogeneity and to identify all relevant aspects of the tinnitus in an individual patient, such as etiological aspects, pathophysiological mechanisms, factors that contribute most to suffering, and comorbidities. In the next section, we review available treatment options, including counselling, cognitive-behavioral therapy (CBT), hearing aids and cochlear implants for patients with a relevant hearing loss, sound generators, novel auditory stimulation approaches, tinnitus retraining therapy (TRT), pharmacological treatment, neurofeedback, brain stimulation, bimodal stimulation, Internet- and app-based digital approaches, and alternative treatment approaches. The evidence for the effectiveness of the various treatment interventions varies considerably. We also discuss differences in current respective guideline recommendations and close with a discussion of how current pathophysiological knowledge, latest scientific evidence, and patient perspectives can be translated in patient-centered care.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"413-425"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528090/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141977385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-11DOI: 10.1007/s10162-024-00953-2
Hossein Mohammadi, Arash Ebrahimian, Nima Maftoon
The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction. The results demonstrated that (1) although the TM shows viscoelastic behavior, the contribution of hysteresis loss was negligible compared to other irreversible dissipated energy components (i.e., fracture energy and friction energy). (2) The TM puncture force did not substantially change during the first hours after animal death, but interestingly, it increased after 1 week due to the drying effects of soft tissue. (3) The needle geometry affected the crack length and the most important features of the force-displacement plot for the needle insertion process (puncture force, puncture displacement, and jump-in force) increased with increasing needle diameter, whereas the insertion velocity only changed the puncture and jump-in forces (both increased with increasing insertion velocity) and did not have a noticeable effect on the puncture displacement. (4) The fracture toughness of the gerbil TM was almost independent of the needle geometry and was found to be around 0.33 0.10 kJ/m2.
{"title":"Experimental Study of Needle Insertion into Gerbil Tympanic Membrane.","authors":"Hossein Mohammadi, Arash Ebrahimian, Nima Maftoon","doi":"10.1007/s10162-024-00953-2","DOIUrl":"10.1007/s10162-024-00953-2","url":null,"abstract":"<p><p>The perforation characteristics and fracture-related mechanical properties of the tympanic membrane (TM) greatly affect surgical procedures like myringotomy and tympanostomy performed on the middle ear. We analyzed the most important features of the gerbil TM perforation using an experimental approach that was based on force measurement during a 2-cycle needle insertion/extraction process. Fracture energy, friction energy, strain energy, and hysteresis loss were taken into consideration for the analysis of the different stages of needle insertion and extraction. The results demonstrated that (1) although the TM shows viscoelastic behavior, the contribution of hysteresis loss was negligible compared to other irreversible dissipated energy components (i.e., fracture energy and friction energy). (2) The TM puncture force did not substantially change during the first hours after animal death, but interestingly, it increased after 1 week due to the drying effects of soft tissue. (3) The needle geometry affected the crack length and the most important features of the force-displacement plot for the needle insertion process (puncture force, puncture displacement, and jump-in force) increased with increasing needle diameter, whereas the insertion velocity only changed the puncture and jump-in forces (both increased with increasing insertion velocity) and did not have a noticeable effect on the puncture displacement. (4) The fracture toughness of the gerbil TM was almost independent of the needle geometry and was found to be around 0.33 <math><mo>±</mo></math> 0.10 kJ/m<sup>2</sup>.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"427-450"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141592246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-01DOI: 10.1007/s10162-024-00956-z
Shawn S Goodman, Sarah Haysley, Skyler G Jennings
The human medial olivocochlear (MOC) reflex was assessed by observing the effects of contralateral acoustic stimulation (CAS) on the cochlear microphonic (CM) across a range of probe frequencies. A frequency-swept probe tone (125-4757 Hz, 90 dB SPL) was presented in two directions (up sweep and down sweep) to normal-hearing young adults. This study assessed MOC effects on the CM in individual participants using a statistical approach that calculated minimum detectable changes in magnitude and phase based on CM signal-to-noise ratio (SNR). Significant increases in CM magnitude, typically 1-2 dB in size, were observed for most participants from 354 to 1414 Hz, where the size and consistency of these effects depended on participant, probe frequency, sweep direction, and SNR. CAS-related phase lags were also observed, consistent with CM-based MOC studies in laboratory animals. Observed effects on CM magnitude and phase were in the opposite directions of reported effects on otoacoustic emissions (OAEs). OAEs are sensitive to changes in the motility of outer hair cells located near the peak region of the traveling wave, while the effects of CAS on the CM likely originate from MOC-related changes in the conductance of outer hair cells located in the basal tail of the traveling wave. Thus, MOC effects on the CM are complementary to those observed for OAEs.
通过观察对侧声刺激(CAS)对不同探头频率的耳蜗微音(CM)的影响,对人类内侧橄榄耳蜗(MOC)反射进行了评估。向听力正常的年轻成年人提供两个方向(上扫和下扫)的频率扫描探头音(125-4757 Hz,90 dB SPL)。本研究采用一种统计方法,根据 CM 信噪比 (SNR) 计算出幅度和相位的最小可检测变化,从而评估 MOC 对个别参与者 CM 的影响。在 354 到 1414 Hz 的频率范围内,大多数参与者的 CM 幅值都有明显增加,通常为 1-2 dB,这些影响的大小和一致性取决于参与者、探头频率、扫描方向和信噪比。还观察到与 CAS 有关的相位滞后,这与在实验室动物中进行的基于 CM 的 MOC 研究一致。观察到的对 CM 幅值和相位的影响与报告的对耳声发射(OAE)的影响方向相反。OAEs 对位于行波峰值附近的外毛细胞的运动变化很敏感,而 CAS 对 CM 的影响可能来自于与 MOC 相关的位于行波基底尾部的外毛细胞的传导变化。因此,MOC 对 CM 的影响是对 OAEs 影响的补充。
{"title":"Human Olivocochlear Effects: A Statistical Detection Approach Applied to the Cochlear Microphonic Evoked by Swept Tones.","authors":"Shawn S Goodman, Sarah Haysley, Skyler G Jennings","doi":"10.1007/s10162-024-00956-z","DOIUrl":"10.1007/s10162-024-00956-z","url":null,"abstract":"<p><p>The human medial olivocochlear (MOC) reflex was assessed by observing the effects of contralateral acoustic stimulation (CAS) on the cochlear microphonic (CM) across a range of probe frequencies. A frequency-swept probe tone (125-4757 Hz, 90 dB SPL) was presented in two directions (up sweep and down sweep) to normal-hearing young adults. This study assessed MOC effects on the CM in individual participants using a statistical approach that calculated minimum detectable changes in magnitude and phase based on CM signal-to-noise ratio (SNR). Significant increases in CM magnitude, typically 1-2 dB in size, were observed for most participants from 354 to 1414 Hz, where the size and consistency of these effects depended on participant, probe frequency, sweep direction, and SNR. CAS-related phase lags were also observed, consistent with CM-based MOC studies in laboratory animals. Observed effects on CM magnitude and phase were in the opposite directions of reported effects on otoacoustic emissions (OAEs). OAEs are sensitive to changes in the motility of outer hair cells located near the peak region of the traveling wave, while the effects of CAS on the CM likely originate from MOC-related changes in the conductance of outer hair cells located in the basal tail of the traveling wave. Thus, MOC effects on the CM are complementary to those observed for OAEs.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"451-475"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-01DOI: 10.1007/s10162-024-00952-3
Ana Šodan, Sabine Meunier, Vincent Péan, Jean-Pierre Lavieille, Stéphane Roman, Olivier Macherey
Introduction: Although a broadband acoustic click is physically the shortest duration sound we can hear, its peripheral neural representation is not as short because of cochlear filtering. The traveling wave imposes frequency-dependent delays to the sound waveform so that in response to a click, apical nerve fibers, coding for low frequencies, are excited several milliseconds after basal fibers, coding for high frequencies. Nevertheless, a click sounds like a click and these across-fiber delays are not perceived. This suggests that they may be compensated by the central auditory system, rendering our perception consistent with the external world. This explanation is difficult to evaluate in normal-hearing listeners because the contributions of peripheral and central auditory processing cannot easily be disentangled. Here, we test this hypothesis in cochlear implant listeners for whom cochlear mechanics is bypassed.
Method: Eight cochlear implant users ranked in perceived duration 12 electrical chirps of various physical durations and spanning the cochlea in the apex-to-base or base-to-apex direction (Exp. 1). Late-latency cortical potentials were also recorded in response to a subset of these chirps (Exp. 2).
Results: We show that an electrical chirp spanning the cochlea from base-to-apex is perceived as shorter than the same chirp spanning the cochlea in the opposite direction despite having the same physical duration. Cortical potentials also provide neural correlates of this asymmetry in perception.
Conclusion: These results demonstrate that the central auditory system processes frequency sweeps differently depending on the direction of the frequency change and that this processing difference is not simply the result of peripheral filtering.
{"title":"Asymmetry in the Perception of Electrical Chirps Presented to Cochlear Implant Listeners.","authors":"Ana Šodan, Sabine Meunier, Vincent Péan, Jean-Pierre Lavieille, Stéphane Roman, Olivier Macherey","doi":"10.1007/s10162-024-00952-3","DOIUrl":"10.1007/s10162-024-00952-3","url":null,"abstract":"<p><strong>Introduction: </strong>Although a broadband acoustic click is physically the shortest duration sound we can hear, its peripheral neural representation is not as short because of cochlear filtering. The traveling wave imposes frequency-dependent delays to the sound waveform so that in response to a click, apical nerve fibers, coding for low frequencies, are excited several milliseconds after basal fibers, coding for high frequencies. Nevertheless, a click sounds like a click and these across-fiber delays are not perceived. This suggests that they may be compensated by the central auditory system, rendering our perception consistent with the external world. This explanation is difficult to evaluate in normal-hearing listeners because the contributions of peripheral and central auditory processing cannot easily be disentangled. Here, we test this hypothesis in cochlear implant listeners for whom cochlear mechanics is bypassed.</p><p><strong>Method: </strong>Eight cochlear implant users ranked in perceived duration 12 electrical chirps of various physical durations and spanning the cochlea in the apex-to-base or base-to-apex direction (Exp. 1). Late-latency cortical potentials were also recorded in response to a subset of these chirps (Exp. 2).</p><p><strong>Results: </strong>We show that an electrical chirp spanning the cochlea from base-to-apex is perceived as shorter than the same chirp spanning the cochlea in the opposite direction despite having the same physical duration. Cortical potentials also provide neural correlates of this asymmetry in perception.</p><p><strong>Conclusion: </strong>These results demonstrate that the central auditory system processes frequency sweeps differently depending on the direction of the frequency change and that this processing difference is not simply the result of peripheral filtering.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"491-506"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527866/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s10162-024-00958-x
Trinh Nguyen, Dwight E Bergles
{"title":"Correction: Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction.","authors":"Trinh Nguyen, Dwight E Bergles","doi":"10.1007/s10162-024-00958-x","DOIUrl":"10.1007/s10162-024-00958-x","url":null,"abstract":"","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"525"},"PeriodicalIF":2.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}