Jiaying Lai, Yi Yang, Yunzhou Liu, Robert B Scharpf, Rachel Karchin
{"title":"Assessing the merits: an opinion on the effectiveness of simulation techniques in tumor subclonal reconstruction.","authors":"Jiaying Lai, Yi Yang, Yunzhou Liu, Robert B Scharpf, Rachel Karchin","doi":"10.1093/bioadv/vbae094","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Neoplastic tumors originate from a single cell, and their evolution can be traced through lineages characterized by mutations, copy number alterations, and structural variants. These lineages are reconstructed and mapped onto evolutionary trees with algorithmic approaches. However, without ground truth benchmark sets, the validity of an algorithm remains uncertain, limiting potential clinical applicability. With a growing number of algorithms available, there is urgent need for standardized benchmark sets to evaluate their merits. Benchmark sets rely on <i>in silico</i> simulations of tumor sequence, but there are no accepted standards for simulation tools, presenting a major obstacle to progress in this field.</p><p><strong>Availability and implementation: </strong>All analysis done in the paper was based on publicly available data from the publication of each accessed tool.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Summary: Neoplastic tumors originate from a single cell, and their evolution can be traced through lineages characterized by mutations, copy number alterations, and structural variants. These lineages are reconstructed and mapped onto evolutionary trees with algorithmic approaches. However, without ground truth benchmark sets, the validity of an algorithm remains uncertain, limiting potential clinical applicability. With a growing number of algorithms available, there is urgent need for standardized benchmark sets to evaluate their merits. Benchmark sets rely on in silico simulations of tumor sequence, but there are no accepted standards for simulation tools, presenting a major obstacle to progress in this field.
Availability and implementation: All analysis done in the paper was based on publicly available data from the publication of each accessed tool.