racoon_clip-a complete pipeline for single-nucleotide analyses of iCLIP and eCLIP data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae084
Melina Klostermann, Kathi Zarnack
{"title":"racoon_clip-a complete pipeline for single-nucleotide analyses of iCLIP and eCLIP data.","authors":"Melina Klostermann, Kathi Zarnack","doi":"10.1093/bioadv/vbae084","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>A vast variety of biological questions connected to RNA-binding proteins can be tackled with UV crosslinking and immunoprecipitation (CLIP) experiments. However, the processing and analysis of CLIP data are rather complex. Moreover, different types of CLIP experiments like iCLIP or eCLIP are often processed in different ways, reducing comparability between multiple experiments. Therefore, we aimed to build an easy-to-use computational tool for the processing of CLIP data that can be used for both iCLIP and eCLIP data, as well as data from other truncation-based CLIP methods.</p><p><strong>Results: </strong>Here, we introduce racoon_clip, a sustainable and fully automated pipeline for the complete processing of iCLIP and eCLIP data to extract RNA binding signal at single-nucleotide resolution. racoon_clip is easy to install and execute, with multiple pre-settings and fully customizable parameters, and outputs a conclusive summary report with visualizations and statistics for all analysis steps.</p><p><strong>Availability and implementation: </strong>racoon_clip is implemented as a Snakemake-powered command line tool (Snakemake version ≥7.22, Python version ≥3.9). The latest release can be downloaded from GitHub (https://github.com/ZarnackGroup/racoon_clip/tree/main) and installed via pip. A detailed documentation, including installation, usage, and customization, can be found at https://racoon-clip.readthedocs.io/en/latest/. The example datasets can be downloaded from the Short Read Archive (SRA; iCLIP: SRR5646576, SRR5646577, SRR5646578) or the ENCODE Project (eCLIP: ENCSR202BFN).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: A vast variety of biological questions connected to RNA-binding proteins can be tackled with UV crosslinking and immunoprecipitation (CLIP) experiments. However, the processing and analysis of CLIP data are rather complex. Moreover, different types of CLIP experiments like iCLIP or eCLIP are often processed in different ways, reducing comparability between multiple experiments. Therefore, we aimed to build an easy-to-use computational tool for the processing of CLIP data that can be used for both iCLIP and eCLIP data, as well as data from other truncation-based CLIP methods.

Results: Here, we introduce racoon_clip, a sustainable and fully automated pipeline for the complete processing of iCLIP and eCLIP data to extract RNA binding signal at single-nucleotide resolution. racoon_clip is easy to install and execute, with multiple pre-settings and fully customizable parameters, and outputs a conclusive summary report with visualizations and statistics for all analysis steps.

Availability and implementation: racoon_clip is implemented as a Snakemake-powered command line tool (Snakemake version ≥7.22, Python version ≥3.9). The latest release can be downloaded from GitHub (https://github.com/ZarnackGroup/racoon_clip/tree/main) and installed via pip. A detailed documentation, including installation, usage, and customization, can be found at https://racoon-clip.readthedocs.io/en/latest/. The example datasets can be downloaded from the Short Read Archive (SRA; iCLIP: SRR5646576, SRR5646577, SRR5646578) or the ENCODE Project (eCLIP: ENCSR202BFN).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
racoon_clip - 用于 iCLIP 和 eCLIP 数据单核苷酸分析的完整管道。
动机紫外交联和免疫沉淀(CLIP)实验可以解决与 RNA 结合蛋白有关的大量生物学问题。然而,CLIP 数据的处理和分析相当复杂。此外,不同类型的 CLIP 实验(如 iCLIP 或 eCLIP)通常采用不同的处理方式,从而降低了多个实验之间的可比性。因此,我们的目标是建立一个简单易用的计算工具来处理 CLIP 数据,该工具既可用于 iCLIP 和 eCLIP 数据,也可用于其他基于截断的 CLIP 方法的数据:在此,我们介绍 racoon_clip,它是一种可持续的全自动管道,用于完整处理 iCLIP 和 eCLIP 数据,以提取单核苷酸分辨率的 RNA 结合信号。racoon_clip易于安装和执行,具有多种预设和完全可定制的参数,并能为所有分析步骤输出具有可视化和统计功能的总结报告。可用性和实现:racoon_clip以Snakemake驱动的命令行工具的形式实现(Snakemake版本≥7.22,Python版本≥3.9)。最新版本可从 GitHub (https://github.com/ZarnackGroup/racoon_clip/tree/main) 下载,并通过 pip 安装。包括安装、使用和定制在内的详细文档可在 https://racoon-clip.readthedocs.io/en/latest/ 上找到。示例数据集可从 Short Read Archive (SRA; iCLIP: SRR5646576, SRR5646577, SRR5646578) 或 ENCODE Project (eCLIP: ENCSR202BFN) 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1