Christoffer Bugge Harder, Shingo Miyauchi, Máté Virágh, Alan Kuo, Ella Thoen, Bill Andreopoulos, Dabao Lu, Inger Skrede, Elodie Drula, Bernard Henrissat, Emmanuelle Morin, Annegret Kohler, Kerrie Barry, Kurt LaButti, Asaf Salamov, Anna Lipzen, Zsolt Merényi, Botond Hegedüs, Petr Baldrian, Martina Stursova, Hedda Weitz, Andy Taylor, Maxim Koriabine, Emily Savage, Igor V Grigoriev, László G Nagy, Francis Martin, Håvard Kauserud
{"title":"Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations.","authors":"Christoffer Bugge Harder, Shingo Miyauchi, Máté Virágh, Alan Kuo, Ella Thoen, Bill Andreopoulos, Dabao Lu, Inger Skrede, Elodie Drula, Bernard Henrissat, Emmanuelle Morin, Annegret Kohler, Kerrie Barry, Kurt LaButti, Asaf Salamov, Anna Lipzen, Zsolt Merényi, Botond Hegedüs, Petr Baldrian, Martina Stursova, Hedda Weitz, Andy Taylor, Maxim Koriabine, Emily Savage, Igor V Grigoriev, László G Nagy, Francis Martin, Håvard Kauserud","doi":"10.1016/j.xgen.2024.100586","DOIUrl":null,"url":null,"abstract":"<p><p>Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293592/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.