RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design.

ArXiv Pub Date : 2025-08-11
Rishabh Anand, Chaitanya K Joshi, Alex Morehead, Arian R Jamasb, Charles Harris, Simon V Mathis, Kieran Didi, Rex Ying, Bryan Hooi, Pietro Liò
{"title":"RNA-FrameFlow: Flow Matching for de novo 3D RNA Backbone Design.","authors":"Rishabh Anand, Chaitanya K Joshi, Alex Morehead, Arian R Jamasb, Charles Harris, Simon V Mathis, Kieran Didi, Rex Ying, Bryan Hooi, Pietro Liò","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce RNA-FrameFlow, the first generative model for 3D RNA backbone design. We build upon <math><mrow><mi>S</mi> <mi>E</mi> <mo>(</mo> <mn>3</mn> <mo>)</mo></mrow> </math> flow matching for protein backbone generation and establish protocols for data preparation and evaluation to address unique challenges posed by RNA modeling. We formulate RNA structures as a set of rigid-body frames and associated loss functions which account for larger, more conformationally flexible RNA backbones (13 atoms per nucleotide) vs. proteins (4 atoms per residue). Toward tackling the lack of diversity in 3D RNA datasets, we explore training with structural clustering and cropping augmentations. Additionally, we define a suite of evaluation metrics to measure whether the generated RNA structures are globally self-consistent (via inverse folding followed by forward folding) and locally recover RNA-specific structural descriptors. The most performant version of RNA-FrameFlow generates locally realistic RNA backbones of 40-150 nucleotides, over 40% of which pass our validity criteria as measured by a self-consistency TM-score ≥ 0.45, at which two RNAs have the same global fold. Open-source code: github.com/rish-16/rna-backbone-design.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce RNA-FrameFlow, the first generative model for 3D RNA backbone design. We build upon S E ( 3 ) flow matching for protein backbone generation and establish protocols for data preparation and evaluation to address unique challenges posed by RNA modeling. We formulate RNA structures as a set of rigid-body frames and associated loss functions which account for larger, more conformationally flexible RNA backbones (13 atoms per nucleotide) vs. proteins (4 atoms per residue). Toward tackling the lack of diversity in 3D RNA datasets, we explore training with structural clustering and cropping augmentations. Additionally, we define a suite of evaluation metrics to measure whether the generated RNA structures are globally self-consistent (via inverse folding followed by forward folding) and locally recover RNA-specific structural descriptors. The most performant version of RNA-FrameFlow generates locally realistic RNA backbones of 40-150 nucleotides, over 40% of which pass our validity criteria as measured by a self-consistency TM-score ≥ 0.45, at which two RNAs have the same global fold. Open-source code: github.com/rish-16/rna-backbone-design.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNA-FrameFlow:从头设计三维 RNA 主干的流程匹配。
我们介绍了 RNA-FrameFlow,这是第一个用于三维 RNA 主干设计的生成模型。我们以用于蛋白质骨架生成的 SE(3) 流匹配为基础,建立了数据准备和评估协议,以应对 RNA 建模带来的独特挑战。我们将 RNA 结构表述为一组刚体框架和相关损失函数,这些刚体框架和损失函数考虑到了 RNA 主干(每个核苷酸 13 个原子)相对于蛋白质(每个残基 4 个原子)更大、构象更灵活的特点。为了解决三维 RNA 数据集缺乏多样性的问题,我们探索了结构聚类和裁剪增强训练。此外,我们还定义了一套评估指标,用于衡量生成的 RNA 结构是否具有全局自洽性(通过反向折叠后再进行正向折叠),以及是否能在局部恢复 RNA 特有的结构描述符。性能最好的 RNA-FrameFlow 版本能生成 40-150 个核苷酸的局部真实 RNA 主干,其中超过 40% 的 RNA 主干通过了我们的有效性标准,即自洽性 TM 分数 >= 0.45(两个 RNA 具有相同的全局折叠)。开放源代码:https://github.com/rish-16/rna-backbone-design。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton therapy range uncertainty reduction using vendor-agnostic tissue characterization on a virtual photon-counting CT head scan. Human-like AI-based Auto-Field-in-Field Whole-Brain Radiotherapy Treatment Planning With Conversation Large Language Model Feedback. MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection. Non-dilemmatic social dynamics promote cooperation in multilayer networks. Computational Analysis of Disease Progression in Pediatric Pulmonary Arterial Hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1