A study of forecasting the Nephila clavipes silk fiber's ultimate tensile strength using machine learning strategies

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-06-26 DOI:10.1016/j.jmbbm.2024.106643
Hongchul Shin , Taeyoung Yoon , Juneseok You , Sungsoo Na
{"title":"A study of forecasting the Nephila clavipes silk fiber's ultimate tensile strength using machine learning strategies","authors":"Hongchul Shin ,&nbsp;Taeyoung Yoon ,&nbsp;Juneseok You ,&nbsp;Sungsoo Na","doi":"10.1016/j.jmbbm.2024.106643","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in biomaterial research conduct artificial intelligence for predicting diverse material properties. However, research predicting the mechanical properties of biomaterial based on amino acid sequences have been notably absent. This research pioneers the use of classification models to predict ultimate tensile strength from silk fiber amino acid sequences, employing logistic regression, support vector machines with various kernels, and a deep neural network (DNN). Remarkably, the model demonstrates a high accuracy of 0.83 during the generalization test. The study introduces an innovative approach to predicting biomaterial mechanical properties beyond traditional experimental methods. Recognizing the limitations of conventional linear prediction models, the research emphasizes the future trajectory toward DNNs that can adeptly capture non-linear relationships with high precision. Moreover, through comprehensive performance comparisons among diverse prediction models, the study offers insights into the effectiveness of specific models for predicting the mechanical properties of certain materials. In conclusion, this study serves as a pioneering contribution, laying the groundwork for future endeavors and advocating for the seamless integration of AI methodologies into materials research.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124002753","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in biomaterial research conduct artificial intelligence for predicting diverse material properties. However, research predicting the mechanical properties of biomaterial based on amino acid sequences have been notably absent. This research pioneers the use of classification models to predict ultimate tensile strength from silk fiber amino acid sequences, employing logistic regression, support vector machines with various kernels, and a deep neural network (DNN). Remarkably, the model demonstrates a high accuracy of 0.83 during the generalization test. The study introduces an innovative approach to predicting biomaterial mechanical properties beyond traditional experimental methods. Recognizing the limitations of conventional linear prediction models, the research emphasizes the future trajectory toward DNNs that can adeptly capture non-linear relationships with high precision. Moreover, through comprehensive performance comparisons among diverse prediction models, the study offers insights into the effectiveness of specific models for predicting the mechanical properties of certain materials. In conclusion, this study serves as a pioneering contribution, laying the groundwork for future endeavors and advocating for the seamless integration of AI methodologies into materials research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习策略预测奈菲拉丝纤维极限拉伸强度的研究。
生物材料研究的最新进展是利用人工智能预测各种材料特性。然而,基于氨基酸序列预测生物材料力学性能的研究却明显缺乏。本研究率先采用分类模型,利用逻辑回归、具有不同核的支持向量机和深度神经网络(DNN),预测丝纤维氨基酸序列的极限拉伸强度。值得注意的是,该模型在泛化测试中的准确率高达 0.83。这项研究提出了一种超越传统实验方法的创新方法来预测生物材料的机械性能。由于认识到传统线性预测模型的局限性,该研究强调了 DNN 的未来发展方向,即能够高精度地捕捉非线性关系。此外,通过对不同预测模型的综合性能进行比较,本研究还深入探讨了特定模型在预测某些材料的机械性能方面的有效性。总之,本研究具有开创性贡献,为未来的工作奠定了基础,并倡导将人工智能方法无缝集成到材料研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering Validation of finite-element-simulated orthodontic forces produced by thermoplastic aligners: Effect of aligner geometry and creep The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: An in-vitro experimental study A benchmark of muscle models to length changes great and small Designs and mechanical responses of 3D-printed Ti6Al4V porous structures based on triply periodic minimal surfaces with different iso-values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1