Filamentation and inhibition of prokaryotic CTP synthase with ligands.

IF 4.5 Q1 MICROBIOLOGY mLife Pub Date : 2024-05-02 eCollection Date: 2024-06-01 DOI:10.1002/mlf2.12119
Chenjun Guo, Zixuan Wang, Ji-Long Liu
{"title":"Filamentation and inhibition of prokaryotic CTP synthase with ligands.","authors":"Chenjun Guo, Zixuan Wang, Ji-Long Liu","doi":"10.1002/mlf2.12119","DOIUrl":null,"url":null,"abstract":"<p><p>Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo-electron microscopy, we determined the structure of <i>Escherichia coli</i> CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6-diazo-5-oxo- l-norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"3 2","pages":"240-250"},"PeriodicalIF":4.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211670/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo-electron microscopy, we determined the structure of Escherichia coli CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6-diazo-5-oxo- l-norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原核生物 CTP 合酶的成丝和配体抑制作用。
三磷酸胞苷合成酶(CTPS)在从头合成三磷酸胞苷(CTP)的过程中发挥着关键作用,而三磷酸胞苷(CTP)是构成生命所必需的 RNA 和 DNA 的基本单位。CTPS 能够与所有四种核苷酸三磷酸酯直接结合:腺嘌呤三磷酸酯、尿苷三磷酸酯、CTP 和胍三磷酸酯。此外,CTPS 还能在体内形成细胞噬纤维,在体外形成代谢丝,并在多个水平上进行调节。CTPS 被认为是对抗病毒或原核病原体入侵或感染的潜在治疗靶点。我们利用低温电子显微镜测定了大肠杆菌 CTPS(ecCTPS)丝与 CTP、烟酰胺腺嘌呤二核苷酸(NADH)和共价抑制剂 6-重氮-5-氧代-l-正亮氨酸(DON)的复合物结构,分辨率达到 2.9 Å。我们根据细丝形成界面的差异构建了一棵系统发生树,并设计了一个变体来验证我们的假设,从而为 CTPS 细丝的形成提供了一个进化的视角。我们的计算分析揭示了 DON 结合后可溶解的氨隧道。通过比较结构分析,我们发现 ecCTPS 的 CTP 结合模式与真核对应物不同。结合生化测定和结构分析,我们确定并验证了 CTP 与 NADH 或腺嘌呤对 CTPS 的协同抑制作用。我们的研究结果拓展了我们对 CTPS 不同调控方面的理解,并为设计针对原核生物 CTPS 的特异性抑制剂奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
期刊最新文献
Staphylococcus aureus SOS response: Activation, impact, and drug targets. EmbB and EmbC regulate the sensitivity of Mycobacterium abscessus to echinomycin. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. Zinc finger 4 negatively controls the transcriptional activator Fzf1 in Saccharomyces cerevisiae. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1