{"title":"NAC4ED: A high-throughput computational platform for the rational design of enzyme activity and substrate selectivity.","authors":"Chuanxi Zhang, Yinghui Feng, Yiting Zhu, Lei Gong, Hao Wei, Lujia Zhang","doi":"10.1002/mlf2.12154","DOIUrl":null,"url":null,"abstract":"<p><p>In silico computational methods have been widely utilized to study enzyme catalytic mechanisms and design enzyme performance, including molecular docking, molecular dynamics, quantum mechanics, and multiscale QM/MM approaches. However, the manual operation associated with these methods poses challenges for simulating enzymes and enzyme variants in a high-throughput manner. We developed the NAC4ED, a high-throughput enzyme mutagenesis computational platform based on the \"near-attack conformation\" design strategy for enzyme catalysis substrates. This platform circumvents the complex calculations involved in transition-state searching by representing enzyme catalytic mechanisms with parameters derived from near-attack conformations. NAC4ED enables the automated, high-throughput, and systematic computation of enzyme mutants, including protein model construction, complex structure acquisition, molecular dynamics simulation, and analysis of active conformation populations. Validation of the accuracy of NAC4ED demonstrated a prediction accuracy of 92.5% for 40 mutations, showing strong consistency between the computational predictions and experimental results. The time required for automated determination of a single enzyme mutant using NAC4ED is 1/764th of that needed for experimental methods. This has significantly enhanced the efficiency of predicting enzyme mutations, leading to revolutionary breakthroughs in improving the performance of high-throughput screening of enzyme variants. NAC4ED facilitates the efficient generation of a large amount of annotated data, providing high-quality data for statistical modeling and machine learning. NAC4ED is currently available at http://lujialab.org.cn/software/.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":"3 4","pages":"505-514"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In silico computational methods have been widely utilized to study enzyme catalytic mechanisms and design enzyme performance, including molecular docking, molecular dynamics, quantum mechanics, and multiscale QM/MM approaches. However, the manual operation associated with these methods poses challenges for simulating enzymes and enzyme variants in a high-throughput manner. We developed the NAC4ED, a high-throughput enzyme mutagenesis computational platform based on the "near-attack conformation" design strategy for enzyme catalysis substrates. This platform circumvents the complex calculations involved in transition-state searching by representing enzyme catalytic mechanisms with parameters derived from near-attack conformations. NAC4ED enables the automated, high-throughput, and systematic computation of enzyme mutants, including protein model construction, complex structure acquisition, molecular dynamics simulation, and analysis of active conformation populations. Validation of the accuracy of NAC4ED demonstrated a prediction accuracy of 92.5% for 40 mutations, showing strong consistency between the computational predictions and experimental results. The time required for automated determination of a single enzyme mutant using NAC4ED is 1/764th of that needed for experimental methods. This has significantly enhanced the efficiency of predicting enzyme mutations, leading to revolutionary breakthroughs in improving the performance of high-throughput screening of enzyme variants. NAC4ED facilitates the efficient generation of a large amount of annotated data, providing high-quality data for statistical modeling and machine learning. NAC4ED is currently available at http://lujialab.org.cn/software/.