{"title":"THz Biomedical Sensing for Early Cancer Detection: Metamaterial Graphene Biosensors With Rotated Split-Ring Resonators","authors":"Marwa Rezeg;Aymen Hlali;Hassen Zairi","doi":"10.1109/JPHOT.2024.3413528","DOIUrl":null,"url":null,"abstract":"A highly sensitive graphene-based metamaterial biosensor is proposed and analyzed for early cancer detection. The sensor design employs three circular graphene split ring resonators to achieve polarization-insensitive performance. The finite element method simulation results confirm that the designed biosensor exhibits a tunable sensing capability. The material under test covers the surface of the biosensor, where resonance occurs with high absorption. The resonance frequencies of the sensor are dependent on the optical properties of the analyte sample, enabling the device to differentiate between various cancer cell types, including skin, blood, cervical, adrenal gland, and breast cancer. Graphene's tunability is leveraged to study the effects of chemical potential, relaxation time, and temperature, with the aim of maximizing the sensor's sensitivity. The designed biosensor, which detects variations in refractive index, exhibits a maximum sensitivity of 3.880 THz/RUI, a Q-factor of 8.948, and a figure-of-merit of 8.146 RUI\n<inline-formula><tex-math>$^{-1}$</tex-math></inline-formula>\n for healthy and cancerous cell samples. The spatial patterns of electric and magnetic fields, surface current distribution, and power flow of the proposed biosensor have been thoroughly analyzed to ensure its sensitivity and suitability for biomedical applications. The results demonstrate the potential of the THz sensor for early cancer detection.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-10"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555126","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10555126/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A highly sensitive graphene-based metamaterial biosensor is proposed and analyzed for early cancer detection. The sensor design employs three circular graphene split ring resonators to achieve polarization-insensitive performance. The finite element method simulation results confirm that the designed biosensor exhibits a tunable sensing capability. The material under test covers the surface of the biosensor, where resonance occurs with high absorption. The resonance frequencies of the sensor are dependent on the optical properties of the analyte sample, enabling the device to differentiate between various cancer cell types, including skin, blood, cervical, adrenal gland, and breast cancer. Graphene's tunability is leveraged to study the effects of chemical potential, relaxation time, and temperature, with the aim of maximizing the sensor's sensitivity. The designed biosensor, which detects variations in refractive index, exhibits a maximum sensitivity of 3.880 THz/RUI, a Q-factor of 8.948, and a figure-of-merit of 8.146 RUI
$^{-1}$
for healthy and cancerous cell samples. The spatial patterns of electric and magnetic fields, surface current distribution, and power flow of the proposed biosensor have been thoroughly analyzed to ensure its sensitivity and suitability for biomedical applications. The results demonstrate the potential of the THz sensor for early cancer detection.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.