DFT insight on stability, optoelectronic, and thermoelectric features of Na3XO (X = Cu, Ag) anti-perovskites: Promising materials for sustainable energy applications

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-06-23 DOI:10.1002/qua.27439
Murefah Mana Al-Anazy, Ahmad Ayyaz, G. Murtaza, Abdulaziz A. Alshihri, Ahmad Usman
{"title":"DFT insight on stability, optoelectronic, and thermoelectric features of Na3XO (X = Cu, Ag) anti-perovskites: Promising materials for sustainable energy applications","authors":"Murefah Mana Al-Anazy,&nbsp;Ahmad Ayyaz,&nbsp;G. Murtaza,&nbsp;Abdulaziz A. Alshihri,&nbsp;Ahmad Usman","doi":"10.1002/qua.27439","DOIUrl":null,"url":null,"abstract":"<p>The structural stability, elastic, optoelectronic, and thermoelectric characteristics of anti-perovskites Na<sub>3</sub>XO (X = Cu, Ag) have been studied using density functional theory (DFT). The computed formation energy suggests these materials' potential synthesis and thermal stability. The structural and elastic properties of Na<sub>3</sub>CuO and Na<sub>3</sub>AgO anti-perovskite compounds were analyzed using the Perdew–Burke–Ernzerhof (GGA-PBE) generalized gradient potential approximation. The electronic and thermoelectric properties are calculated using the TB-mBJ approximation. The materials are identified as direct narrow band gap semiconductors with band gaps of 0.65 and 0.43 eV. The analysis of two-dimensional charge density contours indicates that Na<sub>3</sub>CuO and Na<sub>3</sub>AgO have a mixed bonding character, as validated by the investigation of electron charge density. We analyzed the optical properties of Na<sub>3</sub>CuO and Na<sub>3</sub>AgO, including dielectric function, refractive index, absorbance, optical reflectivity, and energy loss, using photon energy up to 6 eV. The investigated thermoelectric characteristics demonstrate figure of merit (ZT) values of 0.58 and 0.56 at room temperature. Consequently, the analyzed anti-perovskites might address waste heat management requirements and sustainable energy solutions.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 13","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27439","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The structural stability, elastic, optoelectronic, and thermoelectric characteristics of anti-perovskites Na3XO (X = Cu, Ag) have been studied using density functional theory (DFT). The computed formation energy suggests these materials' potential synthesis and thermal stability. The structural and elastic properties of Na3CuO and Na3AgO anti-perovskite compounds were analyzed using the Perdew–Burke–Ernzerhof (GGA-PBE) generalized gradient potential approximation. The electronic and thermoelectric properties are calculated using the TB-mBJ approximation. The materials are identified as direct narrow band gap semiconductors with band gaps of 0.65 and 0.43 eV. The analysis of two-dimensional charge density contours indicates that Na3CuO and Na3AgO have a mixed bonding character, as validated by the investigation of electron charge density. We analyzed the optical properties of Na3CuO and Na3AgO, including dielectric function, refractive index, absorbance, optical reflectivity, and energy loss, using photon energy up to 6 eV. The investigated thermoelectric characteristics demonstrate figure of merit (ZT) values of 0.58 and 0.56 at room temperature. Consequently, the analyzed anti-perovskites might address waste heat management requirements and sustainable energy solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对 Na3XO (X = Cu, Ag) 反超晶石的稳定性、光电和热电特性的 DFT 见解:可持续能源应用的前景材料
利用密度泛函理论(DFT)研究了反超晶石 Na3XO(X = 铜、银)的结构稳定性、弹性、光电和热电特性。计算得出的形成能表明这些材料具有潜在的合成和热稳定性。利用 Perdew-Burke-Ernzerhof (GGA-PBE) 广义梯度势近似分析了 Na3CuO 和 Na3AgO 反包晶石化合物的结构和弹性特性。使用 TB-mBJ 近似法计算了电子和热电性能。这些材料被确定为直接窄带隙半导体,带隙分别为 0.65 和 0.43 eV。对二维电荷密度等值线的分析表明,Na3CuO 和 Na3AgO 具有混合成键特性,电子电荷密度的研究也验证了这一点。我们分析了 Na3CuO 和 Na3AgO 的光学特性,包括介电函数、折射率、吸光度、光反射率和能量损失,使用的光子能量高达 6 eV。所研究的热电特性在室温下的优点系数(ZT)分别为 0.58 和 0.56。因此,所分析的反超晶石可满足余热管理要求和可持续能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Global Analytic Potential Energy Surface of PH2+ (13A″) and Dynamics Studies of the P+(3P) + D2 Reaction Furan Substitution and Ring Fusion Strategies for Enhancing the Fluorescence Performance of Oligothiophene Graphical Approach to Interpreting and Efficiently Evaluating Geminal Wavefunctions Quantitative Structure-Property Relationship Analysis of Physical and ADMET Properties of Anticancer Drugs Using Domination Topological Indices Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1