DFT insight on stability, optoelectronic, and thermoelectric features of Na3XO (X = Cu, Ag) anti-perovskites: Promising materials for sustainable energy applications
Murefah Mana Al-Anazy, Ahmad Ayyaz, G. Murtaza, Abdulaziz A. Alshihri, Ahmad Usman
{"title":"DFT insight on stability, optoelectronic, and thermoelectric features of Na3XO (X = Cu, Ag) anti-perovskites: Promising materials for sustainable energy applications","authors":"Murefah Mana Al-Anazy, Ahmad Ayyaz, G. Murtaza, Abdulaziz A. Alshihri, Ahmad Usman","doi":"10.1002/qua.27439","DOIUrl":null,"url":null,"abstract":"<p>The structural stability, elastic, optoelectronic, and thermoelectric characteristics of anti-perovskites Na<sub>3</sub>XO (X = Cu, Ag) have been studied using density functional theory (DFT). The computed formation energy suggests these materials' potential synthesis and thermal stability. The structural and elastic properties of Na<sub>3</sub>CuO and Na<sub>3</sub>AgO anti-perovskite compounds were analyzed using the Perdew–Burke–Ernzerhof (GGA-PBE) generalized gradient potential approximation. The electronic and thermoelectric properties are calculated using the TB-mBJ approximation. The materials are identified as direct narrow band gap semiconductors with band gaps of 0.65 and 0.43 eV. The analysis of two-dimensional charge density contours indicates that Na<sub>3</sub>CuO and Na<sub>3</sub>AgO have a mixed bonding character, as validated by the investigation of electron charge density. We analyzed the optical properties of Na<sub>3</sub>CuO and Na<sub>3</sub>AgO, including dielectric function, refractive index, absorbance, optical reflectivity, and energy loss, using photon energy up to 6 eV. The investigated thermoelectric characteristics demonstrate figure of merit (ZT) values of 0.58 and 0.56 at room temperature. Consequently, the analyzed anti-perovskites might address waste heat management requirements and sustainable energy solutions.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 13","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27439","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The structural stability, elastic, optoelectronic, and thermoelectric characteristics of anti-perovskites Na3XO (X = Cu, Ag) have been studied using density functional theory (DFT). The computed formation energy suggests these materials' potential synthesis and thermal stability. The structural and elastic properties of Na3CuO and Na3AgO anti-perovskite compounds were analyzed using the Perdew–Burke–Ernzerhof (GGA-PBE) generalized gradient potential approximation. The electronic and thermoelectric properties are calculated using the TB-mBJ approximation. The materials are identified as direct narrow band gap semiconductors with band gaps of 0.65 and 0.43 eV. The analysis of two-dimensional charge density contours indicates that Na3CuO and Na3AgO have a mixed bonding character, as validated by the investigation of electron charge density. We analyzed the optical properties of Na3CuO and Na3AgO, including dielectric function, refractive index, absorbance, optical reflectivity, and energy loss, using photon energy up to 6 eV. The investigated thermoelectric characteristics demonstrate figure of merit (ZT) values of 0.58 and 0.56 at room temperature. Consequently, the analyzed anti-perovskites might address waste heat management requirements and sustainable energy solutions.
期刊介绍:
Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.