Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS Nature Energy Pub Date : 2024-07-01 DOI:10.1038/s41560-024-01579-7
Nengxu Li, Zhifang Shi, Chengbin Fei, Haoyang Jiao, Mingze Li, Hangyu Gu, Steven P. Harvey, Yifan Dong, Matthew C. Beard, Jinsong Huang
{"title":"Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias","authors":"Nengxu Li, Zhifang Shi, Chengbin Fei, Haoyang Jiao, Mingze Li, Hangyu Gu, Steven P. Harvey, Yifan Dong, Matthew C. Beard, Jinsong Huang","doi":"10.1038/s41560-024-01579-7","DOIUrl":null,"url":null,"abstract":"Stability of perovskite solar cells (PSCs) under light, heat, humidity and their combinations have been notably improved recently. However, PSCs have poor reverse-bias stability that limits their real-world application. Here we report a systematic study on the degradation mechanisms of p–i–n structure PSCs under reverse bias. The oxidation of iodide by injected holes at the cathode side initialize the reverse-bias-induced degradation, then the generated neutral iodine oxidizes metal electrode such as copper, followed by drift of Cu+ into perovskites and its reduction by injected electrons, resulting in localized metallic filaments and thus device breakdown. A reinforced barrier with combined lithium fluoride, tin oxide and indium tin oxide at the cathode side reduces device dark current and avoids the corrosion of Cu0. It dramatically increases breakdown voltage to above −20 V and improved the T90 lifetime of PSCs to ~1,000 h under –1.6 V. The modified minimodule also maintained over 90% of its initial performance after 720 h of shadow tests. The stability of perovskite photovoltaics under reverse bias is limited and thus an issue for real-world applications. Nengxu Li and colleagues report the underlying degradation mechanism at the cathode side and a multilayer barrier to minimize it.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01579-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Stability of perovskite solar cells (PSCs) under light, heat, humidity and their combinations have been notably improved recently. However, PSCs have poor reverse-bias stability that limits their real-world application. Here we report a systematic study on the degradation mechanisms of p–i–n structure PSCs under reverse bias. The oxidation of iodide by injected holes at the cathode side initialize the reverse-bias-induced degradation, then the generated neutral iodine oxidizes metal electrode such as copper, followed by drift of Cu+ into perovskites and its reduction by injected electrons, resulting in localized metallic filaments and thus device breakdown. A reinforced barrier with combined lithium fluoride, tin oxide and indium tin oxide at the cathode side reduces device dark current and avoids the corrosion of Cu0. It dramatically increases breakdown voltage to above −20 V and improved the T90 lifetime of PSCs to ~1,000 h under –1.6 V. The modified minimodule also maintained over 90% of its initial performance after 720 h of shadow tests. The stability of perovskite photovoltaics under reverse bias is limited and thus an issue for real-world applications. Nengxu Li and colleagues report the underlying degradation mechanism at the cathode side and a multilayer barrier to minimize it.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在反向偏压下增强过氧化物太阳能电池稳定性的势垒加固技术
最近,过氧化物太阳能电池(PSCs)在光、热、湿度及其组合条件下的稳定性有了显著提高。然而,PSC 的反向偏压稳定性较差,限制了其在现实世界中的应用。在此,我们报告了对 pi-n 结构 PSC 在反向偏压下的降解机制的系统研究。阴极侧注入的空穴氧化了碘,启动了反向偏压诱导的降解,然后生成的中性碘氧化了金属电极(如铜),随后 Cu+ 漂移到过氧化物中,并被注入的电子还原,导致局部金属丝,从而导致器件击穿。在阴极一侧使用氟化锂、氧化锡和氧化铟锡组合的增强型阻挡层可降低器件暗电流,避免 Cu0 被腐蚀。它将击穿电压大幅提高到 -20 V 以上,并将 PSC 的 T90 寿命提高到 -1.6 V 下的约 1,000 小时。经过 720 小时的阴影测试后,改进后的微型模块还能保持 90% 以上的初始性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
期刊最新文献
A wind of change in sustainability The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells A nationally determined contribution framework for energy transition minerals Transparency is key for energy and environment philanthropy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1