Chuchu Wang, Kai Zhang, Bin Cai, Jillian E. Haller, Kathryn E. Carnazza, Jiaojiao Hu, Chunyu Zhao, Zhiqi Tian, Xiao Hu, Daniel Hall, Jiali Qiang, Shouqiao Hou, Zhenying Liu, Jinge Gu, Yaoyang Zhang, Kim B. Seroogy, Jacqueline Burré, Yanshan Fang, Cong Liu, Axel T. Brunger, Dan Li, Jiajie Diao
{"title":"VAMP2 chaperones α-synuclein in synaptic vesicle co-condensates","authors":"Chuchu Wang, Kai Zhang, Bin Cai, Jillian E. Haller, Kathryn E. Carnazza, Jiaojiao Hu, Chunyu Zhao, Zhiqi Tian, Xiao Hu, Daniel Hall, Jiali Qiang, Shouqiao Hou, Zhenying Liu, Jinge Gu, Yaoyang Zhang, Kim B. Seroogy, Jacqueline Burré, Yanshan Fang, Cong Liu, Axel T. Brunger, Dan Li, Jiajie Diao","doi":"10.1038/s41556-024-01456-1","DOIUrl":null,"url":null,"abstract":"α-Synuclein (α-Syn) aggregation is closely associated with Parkinson’s disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)—a component of the SNARE complex that resides on SVs—directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn’s function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn’s function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson’s disease. Agarwal et al. and Wang et al. show that vesicle-associated membrane protein 2 (VAMP2) interacts with and regulates alpha-synuclein biomolecular condensation, affecting α-synuclein function, which may prevent pathological amyloid aggregation.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 8","pages":"1287-1295"},"PeriodicalIF":17.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-024-01456-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
α-Synuclein (α-Syn) aggregation is closely associated with Parkinson’s disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)—a component of the SNARE complex that resides on SVs—directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn’s function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn’s function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson’s disease. Agarwal et al. and Wang et al. show that vesicle-associated membrane protein 2 (VAMP2) interacts with and regulates alpha-synuclein biomolecular condensation, affecting α-synuclein function, which may prevent pathological amyloid aggregation.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology