首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
In vivo models bring FSP1 inhibitors to life. 体内模型将FSP1抑制剂带入生活。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01849-w
Cynthia A Harris,James A Olzmann
{"title":"In vivo models bring FSP1 inhibitors to life.","authors":"Cynthia A Harris,James A Olzmann","doi":"10.1038/s41556-025-01849-w","DOIUrl":"https://doi.org/10.1038/s41556-025-01849-w","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"28 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Target cell cortical tension regulates macrophage trogocytosis. 靶细胞皮层张力调节巨噬细胞吞噬。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01807-6
Caitlin E Cornell, Aymeric Chorlay, Deepak Krishnamurthy, Nicholas R Martin, Lucia Baldauf, Daniel A Fletcher

Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension, they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines whether phagocytosis or trogocytosis occurs, and that macrophages do not require a distinct molecular pathway for trogocytosis.

已知巨噬细胞吞噬小的膜片段,或噬细胞,靶细胞和病原体,而不是完全吞噬它们。然而,究竟是什么原因导致巨噬细胞选择吞噬还是吞噬,我们知之甚少。在这里,我们报道靶细胞的皮质张力是巨噬细胞巨噬症的关键调节因子。在低张力下,巨噬细胞会优先吞噬抗体调理的细胞,而在高张力下,它们倾向于吞噬。利用模型囊泡,我们证明当膜张力增加时,巨噬细胞会迅速从吞噬状态转变为吞噬状态。硬化靶细胞的皮层也会使巨噬细胞倾向于吞噬它们,这种趋势可以通过增加抗体表面密度来抵消,并在细胞吞噬的机械模型中被捕获。这项研究表明,是靶细胞而不是巨噬细胞决定了吞噬还是吞噬的发生,并且巨噬细胞不需要独特的分子途径来进行吞噬。
{"title":"Target cell cortical tension regulates macrophage trogocytosis.","authors":"Caitlin E Cornell, Aymeric Chorlay, Deepak Krishnamurthy, Nicholas R Martin, Lucia Baldauf, Daniel A Fletcher","doi":"10.1038/s41556-025-01807-6","DOIUrl":"https://doi.org/10.1038/s41556-025-01807-6","url":null,"abstract":"<p><p>Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension, they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that the target cell, rather than the macrophage, determines whether phagocytosis or trogocytosis occurs, and that macrophages do not require a distinct molecular pathway for trogocytosis.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145743221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical switch from nibbling to engulfment. 从啃咬到吞噬的机械开关。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-12 DOI: 10.1038/s41556-025-01818-3
Chaoyang Wu,Zheng Liu
{"title":"Mechanical switch from nibbling to engulfment.","authors":"Chaoyang Wu,Zheng Liu","doi":"10.1038/s41556-025-01818-3","DOIUrl":"https://doi.org/10.1038/s41556-025-01818-3","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"12 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sperm miRNAs exercise benefits. 精子mirna有益于锻炼。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01846-z
Angela R Parrish
{"title":"Sperm miRNAs exercise benefits.","authors":"Angela R Parrish","doi":"10.1038/s41556-025-01846-z","DOIUrl":"https://doi.org/10.1038/s41556-025-01846-z","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145723497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zippering against the beat. 对着节拍拉拉链。
IF 19.1 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01847-y
Daryl J V David
{"title":"Zippering against the beat.","authors":"Daryl J V David","doi":"10.1038/s41556-025-01847-y","DOIUrl":"https://doi.org/10.1038/s41556-025-01847-y","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":" ","pages":""},"PeriodicalIF":19.1,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145723786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lineage-determining transcription factors EBF1 and TCF1 shape chromatin fibre folding. 决定谱系的转录因子EBF1和TCF1塑造染色质纤维折叠。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01843-2
{"title":"Lineage-determining transcription factors EBF1 and TCF1 shape chromatin fibre folding.","authors":"","doi":"10.1038/s41556-025-01843-2","DOIUrl":"https://doi.org/10.1038/s41556-025-01843-2","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"4 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145718003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing gene loss after gene editing. 评估基因编辑后的基因损失。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-10 DOI: 10.1038/s41556-025-01845-0
Sabrya Carim
{"title":"Assessing gene loss after gene editing.","authors":"Sabrya Carim","doi":"10.1038/s41556-025-01845-0","DOIUrl":"https://doi.org/10.1038/s41556-025-01845-0","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"12 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145717921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoplasmic reticulum disruption stimulates nuclear membrane mechanotransduction 内质网破坏刺激核膜机械转导
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-09 DOI: 10.1038/s41556-025-01820-9
Zhouyang Shen, Zaza Gelashvili, Philipp Niethammer
Cytosolic phospholipase A2 (cPLA2) controls some of the most powerful inflammatory lipids in vertebrates by releasing their metabolic precursor, arachidonic acid, from the inner nuclear membrane (INM). Ca2+ and INM tension (TINM) are thought to govern the interactions and activity of cPLA2 at the INM. However, as compensatory membrane flow from the contiguous endoplasmic reticulum (ER) may prevent TINM, the conditions permitting nuclear membrane mechanotransduction by cPLA2 or other mediators remain unclear. To test whether the ER buffers TINM, we created the genetically encoded, Ca²⁺-insensitive TINM biosensor amphipathic lipid-packing domain inside the nucleus (ALPIN). Confocal time-lapse imaging of ALPIN– or cPLA2–INM interactions, along with ER morphology, nuclear shape/volume and cell lysis revealed a link between TINM and disrupted ER–nuclear membrane contiguity in osmotically or ferroptotically stressed mammalian cells and at zebrafish wound margins in vivo. By combining ALPIN imaging with Ca2+-induced ER disruption, we reveal the causality of this correlation, which suggests that compensatory membrane flow from the ER buffers TINM without preventing it. Besides consolidating the biomechanical basis of cPLA2 activation by nuclear deformation, our results identify cell stress- and cell death-induced ER disruption as an additional nuclear membrane mechanotransduction trigger.
胞质磷脂酶A2 (cPLA2)通过从内核膜(INM)释放代谢前体花生四烯酸来控制脊椎动物中一些最强大的炎性脂质。Ca2+和INM张力(TINM)被认为控制着cPLA2在INM上的相互作用和活性。然而,由于来自连续内质网(ER)的代偿性膜流可能阻止TINM,因此允许cPLA2或其他介质进行核膜机械转导的条件尚不清楚。为了测试ER是否缓冲了TINM,我们在细胞核内创建了基因编码的ca2 +不敏感的TINM生物传感器两亲脂质填充结构域(ALPIN)。ALPIN -或cPLA2-INM相互作用的共聚焦延时成像,以及内质网形态、核形状/体积和细胞裂解,揭示了在渗透或铁致应激的哺乳动物细胞和斑马鱼伤口边缘中,TINM与内质网核膜连续破坏之间的联系。通过将ALPIN成像与Ca2+诱导的内质网破坏相结合,我们揭示了这种相关性的因果关系,这表明内质网的代偿性膜流缓冲了TINM,而不是阻止它。除了巩固通过核变形激活cPLA2的生物力学基础外,我们的研究结果还确定了细胞应激和细胞死亡诱导的内质网破坏是一个额外的核膜机械转导触发因素。
{"title":"Endoplasmic reticulum disruption stimulates nuclear membrane mechanotransduction","authors":"Zhouyang Shen, Zaza Gelashvili, Philipp Niethammer","doi":"10.1038/s41556-025-01820-9","DOIUrl":"https://doi.org/10.1038/s41556-025-01820-9","url":null,"abstract":"Cytosolic phospholipase A2 (cPLA2) controls some of the most powerful inflammatory lipids in vertebrates by releasing their metabolic precursor, arachidonic acid, from the inner nuclear membrane (INM). Ca2+ and INM tension (TINM) are thought to govern the interactions and activity of cPLA2 at the INM. However, as compensatory membrane flow from the contiguous endoplasmic reticulum (ER) may prevent TINM, the conditions permitting nuclear membrane mechanotransduction by cPLA2 or other mediators remain unclear. To test whether the ER buffers TINM, we created the genetically encoded, Ca²⁺-insensitive TINM biosensor amphipathic lipid-packing domain inside the nucleus (ALPIN). Confocal time-lapse imaging of ALPIN– or cPLA2–INM interactions, along with ER morphology, nuclear shape/volume and cell lysis revealed a link between TINM and disrupted ER–nuclear membrane contiguity in osmotically or ferroptotically stressed mammalian cells and at zebrafish wound margins in vivo. By combining ALPIN imaging with Ca2+-induced ER disruption, we reveal the causality of this correlation, which suggests that compensatory membrane flow from the ER buffers TINM without preventing it. Besides consolidating the biomechanical basis of cPLA2 activation by nuclear deformation, our results identify cell stress- and cell death-induced ER disruption as an additional nuclear membrane mechanotransduction trigger.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"60 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145705138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A foundation for tomorrow’s discoveries in cell biology 为未来细胞生物学的发现奠定了基础
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-05 DOI: 10.1038/s41556-025-01824-5
Ruth R. Cheng, Rebecca L. Bradford
{"title":"A foundation for tomorrow’s discoveries in cell biology","authors":"Ruth R. Cheng, Rebecca L. Bradford","doi":"10.1038/s41556-025-01824-5","DOIUrl":"https://doi.org/10.1038/s41556-025-01824-5","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"35 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145680115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human epiblast model reveals dynamic TGFβ-mediated control of epithelial identity during mammalian epiblast development. 人外胚层模型揭示了哺乳动物外胚层发育过程中tgf β介导的上皮特性的动态控制。
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2025-12-03 DOI: 10.1038/s41556-025-01831-6
Irene Zorzan,Elena Carbognin,Andrea Lauria,Valentina Proserpio,Davide Benvegnù,Federica Bertelli,Susana De Juambelz Urías,Caterina Dalrio,Giorgia Panebianco,Rebecca Scarfò,Eleonora Pensabene,Mattia Arboit,Irene Paolucci,Andrea Drusin,Dario Bizzotto,Monika Sledziowska,Paola Braghetta,Andrea Ditadi,Gianluca Amadei,Salvatore Oliviero,Graziano Martello
Pluripotency, the ability to generate all body cell types, emerges in a disorganized embryonic cell mass. After implantation, these cells form a columnar epithelium and initiate lumenogenesis. During gastrulation, some undergo epithelial-to-mesenchymal transition to form the primitive streak (PS). The signals controlling these events in humans are largely unknown. Here, to study them, we developed a chemically defined 3D model where conventional pluripotent stem cells self-organize into a columnar epithelium with a lumen, from which PS-like cells emerge. We show that early TGFβ family inhibition prevents epithelial identity, also in murine 3D embryo models and in embryos. ZNF398 acts downstream of TGFβ1, activating the epithelial master regulator ESRP1 while repressing mesenchymal factors CDH2 and ZEB2. After epithelium formation, TGFβ1 stimulation is dispensable for its maintenance. However, treatment via ACTIVIN-a distinct TGFβ family ligand-induces PS efficiently. Thus, signalling of the TGFβ family dynamically governs pluripotent epiblast epithelial identity.
多能性,即产生所有体细胞类型的能力,出现在无序的胚胎细胞群中。植入后,这些细胞形成柱状上皮,并开始管腔形成。在原肠胚形成过程中,一些原肠胚经历上皮细胞向间质细胞的转变,形成原始条纹(PS)。控制人类这些事件的信号在很大程度上是未知的。在这里,为了研究它们,我们开发了一个化学定义的3D模型,其中传统的多能干细胞自组织成具有管腔的柱状上皮,从中出现ps样细胞。我们发现,在小鼠3D胚胎模型和胚胎中,早期TGFβ家族抑制也会阻止上皮细胞的识别。ZNF398作用于tgf - β1的下游,激活上皮主调控因子ESRP1,同时抑制间充质因子CDH2和ZEB2。上皮形成后,tgf - β1的刺激对其维持是必不可少的。然而,通过激活素(一种独特的TGFβ家族配体)治疗可有效诱导PS。因此,TGFβ家族的信号动态调控多能性外胚层上皮的特性。
{"title":"A human epiblast model reveals dynamic TGFβ-mediated control of epithelial identity during mammalian epiblast development.","authors":"Irene Zorzan,Elena Carbognin,Andrea Lauria,Valentina Proserpio,Davide Benvegnù,Federica Bertelli,Susana De Juambelz Urías,Caterina Dalrio,Giorgia Panebianco,Rebecca Scarfò,Eleonora Pensabene,Mattia Arboit,Irene Paolucci,Andrea Drusin,Dario Bizzotto,Monika Sledziowska,Paola Braghetta,Andrea Ditadi,Gianluca Amadei,Salvatore Oliviero,Graziano Martello","doi":"10.1038/s41556-025-01831-6","DOIUrl":"https://doi.org/10.1038/s41556-025-01831-6","url":null,"abstract":"Pluripotency, the ability to generate all body cell types, emerges in a disorganized embryonic cell mass. After implantation, these cells form a columnar epithelium and initiate lumenogenesis. During gastrulation, some undergo epithelial-to-mesenchymal transition to form the primitive streak (PS). The signals controlling these events in humans are largely unknown. Here, to study them, we developed a chemically defined 3D model where conventional pluripotent stem cells self-organize into a columnar epithelium with a lumen, from which PS-like cells emerge. We show that early TGFβ family inhibition prevents epithelial identity, also in murine 3D embryo models and in embryos. ZNF398 acts downstream of TGFβ1, activating the epithelial master regulator ESRP1 while repressing mesenchymal factors CDH2 and ZEB2. After epithelium formation, TGFβ1 stimulation is dispensable for its maintenance. However, treatment via ACTIVIN-a distinct TGFβ family ligand-induces PS efficiently. Thus, signalling of the TGFβ family dynamically governs pluripotent epiblast epithelial identity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"115 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2025-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145664069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1