首页 > 最新文献

Nature Cell Biology最新文献

英文 中文
FMRP gains mitochondrial fission control FMRP 获得线粒体裂变控制权
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01567-9
Carissa L. Sirois, Soraya O. Sandoval, Xinyu Zhao
Mitochondrial fission and fusion are crucial for neurons. The RNA-binding protein FMRP regulates mitochondrial dynamics, including fusion and trafficking in neurons. A study now identifies a mechanism by which FMRP regulates mitochondrial fission.
线粒体的分裂和融合对神经元至关重要。RNA 结合蛋白 FMRP 可调节线粒体的动力学,包括神经元中的融合和贩运。现在,一项研究确定了FMRP调节线粒体裂变的机制。
{"title":"FMRP gains mitochondrial fission control","authors":"Carissa L. Sirois, Soraya O. Sandoval, Xinyu Zhao","doi":"10.1038/s41556-024-01567-9","DOIUrl":"https://doi.org/10.1038/s41556-024-01567-9","url":null,"abstract":"Mitochondrial fission and fusion are crucial for neurons. The RNA-binding protein FMRP regulates mitochondrial dynamics, including fusion and trafficking in neurons. A study now identifies a mechanism by which FMRP regulates mitochondrial fission.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"98 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FMRP regulates MFF translation to locally direct mitochondrial fission in neurons FMRP 调控 MFF 翻译,局部引导神经元线粒体分裂
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01544-2
Adam R. Fenton, Ruchao Peng, Charles Bond, Siewert Hugelier, Melike Lakadamyali, Yi-Wei Chang, Erika L. F. Holzbaur, Thomas A. Jongens

Fragile X messenger ribonucleoprotein (FMRP) is a critical regulator of translation, whose dysfunction causes fragile X syndrome. FMRP dysfunction disrupts mitochondrial health in neurons, but it is unclear how FMRP supports mitochondrial homoeostasis. Here we demonstrate that FMRP granules are recruited to the mitochondrial midzone, where they mark mitochondrial fission sites in axons and dendrites. Endolysosomal vesicles contribute to FMRP granule positioning around mitochondria and facilitate FMRP-associated fission via Rab7 GTP hydrolysis. Cryo-electron tomography and real-time translation imaging reveal that mitochondria-associated FMRP granules are ribosome-rich structures that serve as sites of local protein synthesis. Specifically, FMRP promotes local translation of mitochondrial fission factor (MFF), selectively enabling replicative fission at the mitochondrial midzone. Disrupting FMRP function dysregulates mitochondria-associated MFF translation and perturbs fission dynamics, resulting in increased peripheral fission and an irregular distribution of mitochondrial nucleoids. Thus, FMRP regulates local translation of MFF in neurons, enabling precise control of mitochondrial fission.

脆性 X 信使核糖核蛋白(FMRP)是翻译的关键调节因子,其功能障碍会导致脆性 X 综合征。FMRP功能障碍会破坏神经元线粒体的健康,但目前还不清楚FMRP如何支持线粒体的平衡。在这里,我们证明了 FMRP 颗粒被招募到线粒体中区,并在那里标记轴突和树突中的线粒体裂变位点。溶酶体内囊泡有助于FMRP颗粒在线粒体周围的定位,并通过Rab7 GTP水解促进FMRP相关裂变。低温电子断层扫描和实时翻译成像显示,线粒体相关的FMRP颗粒是富含核糖体的结构,是局部蛋白质合成的场所。具体来说,FMRP 促进线粒体裂变因子(MFF)的局部翻译,有选择性地促成线粒体中区的复制裂变。干扰 FMRP 的功能会使线粒体相关 MFF 翻译失调并扰乱裂变动力学,导致外围裂变增加和线粒体核仁分布不规则。因此,FMRP 可调节神经元中 MFF 的局部翻译,从而实现对线粒体裂变的精确控制。
{"title":"FMRP regulates MFF translation to locally direct mitochondrial fission in neurons","authors":"Adam R. Fenton, Ruchao Peng, Charles Bond, Siewert Hugelier, Melike Lakadamyali, Yi-Wei Chang, Erika L. F. Holzbaur, Thomas A. Jongens","doi":"10.1038/s41556-024-01544-2","DOIUrl":"https://doi.org/10.1038/s41556-024-01544-2","url":null,"abstract":"<p>Fragile X messenger ribonucleoprotein (FMRP) is a critical regulator of translation, whose dysfunction causes fragile X syndrome. FMRP dysfunction disrupts mitochondrial health in neurons, but it is unclear how FMRP supports mitochondrial homoeostasis. Here we demonstrate that FMRP granules are recruited to the mitochondrial midzone, where they mark mitochondrial fission sites in axons and dendrites. Endolysosomal vesicles contribute to FMRP granule positioning around mitochondria and facilitate FMRP-associated fission via Rab7 GTP hydrolysis. Cryo-electron tomography and real-time translation imaging reveal that mitochondria-associated FMRP granules are ribosome-rich structures that serve as sites of local protein synthesis. Specifically, FMRP promotes local translation of mitochondrial fission factor (MFF), selectively enabling replicative fission at the mitochondrial midzone. Disrupting FMRP function dysregulates mitochondria-associated MFF translation and perturbs fission dynamics, resulting in increased peripheral fission and an irregular distribution of mitochondrial nucleoids. Thus, FMRP regulates local translation of MFF in neurons, enabling precise control of mitochondrial fission.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"7 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration 受损肠隐窝中的染色质重塑可协调冗余的 TGFβ 和 Hippo 信号,从而推动肠道再生
IF 21.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-15 DOI: 10.1038/s41556-024-01550-4
Mardi Fink, Kizito Njah, Shyam J. Patel, David P. Cook, Vanessa Man, Francesco Ruso, Arsheen Rajan, Masahiro Narimatsu, Andreea Obersterescu, Melanie J. Pye, Daniel Trcka, Kin Chan, Arshad Ayyaz, Jeffrey L. Wrana

Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair.

成功组织再生的细胞状态动力学特征尚不明确。在肠道中,损伤会促使上皮细胞重编程为复兴干细胞(revSCs),重建Lgr5+肠干细胞(ISCs)。这里对辐照后再生的小鼠隐窝进行的单核多组学研究显示,revSC染色质可及性与ISC和分化系重叠。虽然revSC基因本身在整个平衡上皮细胞中都可获得,但损伤诱导的隐窝染色质重塑汇聚于Hippo和转化生长因子-β(TGFβ)信号通路,我们发现TGFβ信号通路被短暂激活并直接诱导功能性revSC。组合基因表达分析进一步表明了revSCs的多种来源,我们还证明了TGFβ可将肠细胞、鹅口疮细胞和paneth细胞重编程为revSCs,并显示单个revSCs可形成器官组织。尽管如此,TGFβ 信号的缺失会导致轻微的再生缺陷,而干扰 Hippo 和 TGFβ 则会导致严重的缺陷和死亡。因此,肠道再生已准备就绪,可通过隐窝定位的瞬时形态发生器的补偿系统激活,从而支持上皮重编程和强大的肠道修复。
{"title":"Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration","authors":"Mardi Fink, Kizito Njah, Shyam J. Patel, David P. Cook, Vanessa Man, Francesco Ruso, Arsheen Rajan, Masahiro Narimatsu, Andreea Obersterescu, Melanie J. Pye, Daniel Trcka, Kin Chan, Arshad Ayyaz, Jeffrey L. Wrana","doi":"10.1038/s41556-024-01550-4","DOIUrl":"https://doi.org/10.1038/s41556-024-01550-4","url":null,"abstract":"<p>Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5<sup>+</sup> intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair.</p>","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"20 1","pages":""},"PeriodicalIF":21.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid droplet messengers 脂滴信使
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01563-z
Melina Casadio
{"title":"Lipid droplet messengers","authors":"Melina Casadio","doi":"10.1038/s41556-024-01563-z","DOIUrl":"10.1038/s41556-024-01563-z","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic mRNA localization in P-bodies 环状 mRNA 在 P 体内的定位
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01561-1
Sabrya Carim
{"title":"Cyclic mRNA localization in P-bodies","authors":"Sabrya Carim","doi":"10.1038/s41556-024-01561-1","DOIUrl":"10.1038/s41556-024-01561-1","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
To eat or not to eat 吃还是不吃
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01560-2
Stylianos Lefkopoulos
{"title":"To eat or not to eat","authors":"Stylianos Lefkopoulos","doi":"10.1038/s41556-024-01560-2","DOIUrl":"10.1038/s41556-024-01560-2","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seeing tension in cells 看到细胞中的张力
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01562-0
Daryl J. V. David
{"title":"Seeing tension in cells","authors":"Daryl J. V. David","doi":"10.1038/s41556-024-01562-0","DOIUrl":"10.1038/s41556-024-01562-0","url":null,"abstract":"","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1825-1825"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating human embryogenesis through tailored model selection 通过量身定制的模型选择为人类胚胎发育导航
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-11 DOI: 10.1038/s41556-024-01525-5
Berna Sozen
Rapid advances in stem cell and bioengineering technologies have sparked a revolution in developmental biology, with stem cell-based embryo models emerging as crucial tools to uncover the intricacies of human embryogenesis. However, making progress relies on precisely posing our questions and selecting our models.
干细胞和生物工程技术的飞速发展引发了发育生物学的一场革命,以干细胞为基础的胚胎模型成为揭示人类胚胎发育复杂性的重要工具。然而,要取得进展,就必须准确地提出问题和选择模型。
{"title":"Navigating human embryogenesis through tailored model selection","authors":"Berna Sozen","doi":"10.1038/s41556-024-01525-5","DOIUrl":"10.1038/s41556-024-01525-5","url":null,"abstract":"Rapid advances in stem cell and bioengineering technologies have sparked a revolution in developmental biology, with stem cell-based embryo models emerging as crucial tools to uncover the intricacies of human embryogenesis. However, making progress relies on precisely posing our questions and selecting our models.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1819-1821"},"PeriodicalIF":17.3,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion 肌动蛋白调节因子的时空协调在细胞-细胞融合中产生侵袭性突起
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-11-01 DOI: 10.1038/s41556-024-01541-5
Yue Lu, Tezin Walji, Benjamin Ravaux, Pratima Pandey, Changsong Yang, Bing Li, Delgermaa Luvsanjav, Kevin H. Lam, Ruihui Zhang, Zhou Luo, Chuanli Zhou, Christa W. Habela, Scott B. Snapper, Rong Li, David J. Goldhamer, David W. Schmidtke, Duojia Pan, Tatyana M. Svitkina, Elizabeth H. Chen
Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell–cell fusion. Lu et al. reveal the spatiotemporal coordination between two nucleation-promoting factors, WAVE and N-WASP, and two actin-bundling proteins, dynamin and WIP, in generating invasive protrusions at the mammalian myoblast fusogenic synapse.
侵袭性膜突起在多种细胞过程中发挥着核心作用。与丝状突起不同,侵袭性突起具有机械硬度,并由分枝肌动蛋白聚合推动。然而,分枝肌动蛋白丝是如何组织起来形成指状侵入性突起的还不清楚。在这里,我们通过研究哺乳动物的融合突触(在这种突触中,侵入性突起的产生促进了细胞膜的并置和融合),揭示了侵入性突起形成的机制。我们发现 Arp2/3 复合物的两个成核促进因子 WAVE 和 N-WASP 在突起中表现出不同的定位模式。WAVE 与突起结构前缘的质膜密切相关,而 N-WASP 则与 WIP 一起沿突起轴的肌动蛋白束富集。在突起萌发和生长过程中,Arp2/3 复合物核化分枝肌动蛋白丝,生成低密度肌动蛋白云,其中大 GTP 酶达能蛋白将新的分枝肌动蛋白丝组织成束,然后由 WIP 稳定肌动蛋白束,后者具有肌动蛋白束蛋白的功能。在培养细胞和小鼠胚胎中,这些成分中任何一个被破坏,都会导致突起缺陷和成肌细胞融合失败。总之,我们的研究揭示了两种成核促进因子和两种肌动蛋白束缚蛋白在哺乳动物融合突触形成侵袭性突起过程中错综复杂的时空协调,对理解细胞-细胞融合以外的细胞过程中侵袭性突起的形成具有普遍意义。
{"title":"Spatiotemporal coordination of actin regulators generates invasive protrusions in cell–cell fusion","authors":"Yue Lu,&nbsp;Tezin Walji,&nbsp;Benjamin Ravaux,&nbsp;Pratima Pandey,&nbsp;Changsong Yang,&nbsp;Bing Li,&nbsp;Delgermaa Luvsanjav,&nbsp;Kevin H. Lam,&nbsp;Ruihui Zhang,&nbsp;Zhou Luo,&nbsp;Chuanli Zhou,&nbsp;Christa W. Habela,&nbsp;Scott B. Snapper,&nbsp;Rong Li,&nbsp;David J. Goldhamer,&nbsp;David W. Schmidtke,&nbsp;Duojia Pan,&nbsp;Tatyana M. Svitkina,&nbsp;Elizabeth H. Chen","doi":"10.1038/s41556-024-01541-5","DOIUrl":"10.1038/s41556-024-01541-5","url":null,"abstract":"Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell–cell fusion. Lu et al. reveal the spatiotemporal coordination between two nucleation-promoting factors, WAVE and N-WASP, and two actin-bundling proteins, dynamin and WIP, in generating invasive protrusions at the mammalian myoblast fusogenic synapse.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1860-1877"},"PeriodicalIF":17.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal dynamics of membrane contact sites 膜接触点的时间动态
IF 17.3 1区 生物学 Q1 CELL BIOLOGY Pub Date : 2024-10-31 DOI: 10.1038/s41556-024-01539-z
Tomas Knedlik, Marta Giacomello
Cell behaviour changes temporally in response to environmental and metabolic cues. This also applies to membrane contact sites (MCSs), where organelles come into close proximity to perform specific functions, such as lipid transfer or calcium signalling. Here, we discuss how MCSs change over time and whether MCSs exhibit circadian rhythmicity.
细胞行为会随着环境和新陈代谢线索的变化而发生时间性变化。这同样适用于膜接触点(MCSs),细胞器在这些接触点靠近以执行特定功能,如脂质转移或钙信号传导。在这里,我们将讨论膜接触点是如何随时间变化的,以及膜接触点是否表现出昼夜节律性。
{"title":"Temporal dynamics of membrane contact sites","authors":"Tomas Knedlik,&nbsp;Marta Giacomello","doi":"10.1038/s41556-024-01539-z","DOIUrl":"10.1038/s41556-024-01539-z","url":null,"abstract":"Cell behaviour changes temporally in response to environmental and metabolic cues. This also applies to membrane contact sites (MCSs), where organelles come into close proximity to perform specific functions, such as lipid transfer or calcium signalling. Here, we discuss how MCSs change over time and whether MCSs exhibit circadian rhythmicity.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 11","pages":"1822-1824"},"PeriodicalIF":17.3,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1