Controlled Synthesis of Terbium-Doped Colloidal Gd2O2S Nanoplatelets Enables High-Performance X-ray Scintillators.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-01 DOI:10.1021/acsnano.4c01652
Khursand E Yorov, Saidkhodzha Nematulloev, Bedil M Saidzhonov, Maxim S Skorotetcky, Azimet A Karluk, Bashir E Hasanov, Wasim J Mir, Tariq Sheikh, Luis Gutiérrez-Arzaluz, Maximilian Emanuel Maria Phielepeit, Nawal Ashraf, Robert H Blick, Omar F Mohammed, Mehmet Bayindir, Osman M Bakr
{"title":"Controlled Synthesis of Terbium-Doped Colloidal Gd<sub>2</sub>O<sub>2</sub>S Nanoplatelets Enables High-Performance X-ray Scintillators.","authors":"Khursand E Yorov, Saidkhodzha Nematulloev, Bedil M Saidzhonov, Maxim S Skorotetcky, Azimet A Karluk, Bashir E Hasanov, Wasim J Mir, Tariq Sheikh, Luis Gutiérrez-Arzaluz, Maximilian Emanuel Maria Phielepeit, Nawal Ashraf, Robert H Blick, Omar F Mohammed, Mehmet Bayindir, Osman M Bakr","doi":"10.1021/acsnano.4c01652","DOIUrl":null,"url":null,"abstract":"<p><p>Terbium-doped gadolinium oxysulfide (Gd<sub>2</sub>O<sub>2</sub>S:Tb<sup>3+</sup>), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY). In particular, our investigation reveals a strong correlation between PLQY, LY, particle size, and Tb<sup>3+</sup>concentration. Our synthetic approach allows precise control over the lateral size and thickness of the Gadox NPLs, resulting in a LY of 50,000 photons/MeV. Flexible scintillating screens fabricated with the solution-processable Gadox NPLs exhibited a 20 lp/mm X-ray spatial resolution, surpassing commercial Gadox scintillators. These high-performance and flexible Gadox NPL-based scintillators enable enhanced X-ray imaging capabilities in medicine and security. Our work provides a framework for designing nanomaterial scintillators with superior spatial resolution and efficiency through precise control of dimensions and dopant concentration.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c01652","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb3+), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY). In particular, our investigation reveals a strong correlation between PLQY, LY, particle size, and Tb3+concentration. Our synthetic approach allows precise control over the lateral size and thickness of the Gadox NPLs, resulting in a LY of 50,000 photons/MeV. Flexible scintillating screens fabricated with the solution-processable Gadox NPLs exhibited a 20 lp/mm X-ray spatial resolution, surpassing commercial Gadox scintillators. These high-performance and flexible Gadox NPL-based scintillators enable enhanced X-ray imaging capabilities in medicine and security. Our work provides a framework for designing nanomaterial scintillators with superior spatial resolution and efficiency through precise control of dimensions and dopant concentration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺铽胶体 Gd2O2S 纳米颗粒的可控合成实现了高性能 X 射线闪烁体。
掺铽的氧化钆硫化物(Gd2O2S:Tb3+)通常被称为 Gadox,因其出色的 X 射线衰减效率和高光产率而成为一种广泛使用的闪烁体材料。然而,基于 Gadox 的闪烁体由于粒径较大,会产生明显的光散射,因此 X 射线空间分辨率较低。为了解决这一局限性,我们报告了掺铽胶体 Gadox 纳米颗粒(NPLs)的合成过程,其光致发光量子产率(PLQY)接近统一,辐射发光光产率(LY)也很高。我们的研究尤其揭示了 PLQY、LY、粒度和 Tb3+ 浓度之间的密切联系。我们的合成方法可以精确控制 Gadox NPLs 的横向尺寸和厚度,从而使 LY 达到 50,000 光子/MeV。用溶液可加工 Gadox NPL 制造的柔性闪烁屏显示出 20 lp/mm 的 X 射线空间分辨率,超过了商用 Gadox 闪烁器。这些基于 Gadox NPL 的高性能柔性闪烁体可增强医学和安全领域的 X 射线成像能力。我们的工作为通过精确控制尺寸和掺杂浓度来设计具有卓越空间分辨率和效率的纳米材料闪烁体提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
23.81%-Efficiency Flexible Inverted Perovskite Solar Cells with Enhanced Stability and Flexibility via a Lewis Base Passivation. Biomimetic Trypsin-Responsive Structure-Bridged Mesoporous Organosilica Nanomedicine for Precise Treatment of Acute Pancreatitis. Direct Optical Patterning of Metal-Organic Frameworks via Photoacid-Induced Etching. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. Transforming Albumin into a Trojan Horse of Immunotherapy-Resistant Colorectal Cancer with a High Microsatellite Instability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1