An Organ-aware Diagnosis Framework for Radiology Report Generation.

Shiyu Li, Pengchong Qiao, Lin Wang, Munan Ning, Li Yuan, Yefeng Zheng, Jie Chen
{"title":"An Organ-aware Diagnosis Framework for Radiology Report Generation.","authors":"Shiyu Li, Pengchong Qiao, Lin Wang, Munan Ning, Li Yuan, Yefeng Zheng, Jie Chen","doi":"10.1109/TMI.2024.3421599","DOIUrl":null,"url":null,"abstract":"<p><p>Radiology report generation (RRG) is crucial to save the valuable time of radiologists in drafting the report, therefore increasing their work efficiency. Compared to typical methods that directly transfer image captioning technologies to RRG, our approach incorporates organ-wise priors into the report generation. Specifically, in this paper, we propose Organ-aware Diagnosis (OaD) to generate diagnostic reports containing descriptions of each physiological organ. During training, we first develop a task distillation (TD) module to extract organ-level descriptions from reports. We then introduce an organ-aware report generation module that, for one thing, provides a specific description for each organ, and for another, simulates clinical situations to provide short descriptions for normal cases. Furthermore, we design an auto-balance mask loss to ensure balanced training for normal/abnormal descriptions and various organs simultaneously. Being intuitively reasonable and practically simple, our OaD outperforms SOTA alternatives by large margins on commonly used IU-Xray and MIMIC-CXR datasets, as evidenced by a 3.4% BLEU-1 improvement on MIMIC-CXR and 2.0% BLEU-2 improvement on IU-Xray.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3421599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Radiology report generation (RRG) is crucial to save the valuable time of radiologists in drafting the report, therefore increasing their work efficiency. Compared to typical methods that directly transfer image captioning technologies to RRG, our approach incorporates organ-wise priors into the report generation. Specifically, in this paper, we propose Organ-aware Diagnosis (OaD) to generate diagnostic reports containing descriptions of each physiological organ. During training, we first develop a task distillation (TD) module to extract organ-level descriptions from reports. We then introduce an organ-aware report generation module that, for one thing, provides a specific description for each organ, and for another, simulates clinical situations to provide short descriptions for normal cases. Furthermore, we design an auto-balance mask loss to ensure balanced training for normal/abnormal descriptions and various organs simultaneously. Being intuitively reasonable and practically simple, our OaD outperforms SOTA alternatives by large margins on commonly used IU-Xray and MIMIC-CXR datasets, as evidenced by a 3.4% BLEU-1 improvement on MIMIC-CXR and 2.0% BLEU-2 improvement on IU-Xray.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生成放射报告的器官感知诊断框架
放射学报告生成(RRG)对于节省放射科医生起草报告的宝贵时间,从而提高他们的工作效率至关重要。与直接将图像标题技术移植到 RRG 的典型方法相比,我们的方法将器官先验纳入了报告生成。具体来说,我们在本文中提出了器官感知诊断(Organ-aware Diagnosis,OaD),以生成包含各生理器官描述的诊断报告。在训练过程中,我们首先开发了一个任务蒸馏(TD)模块,用于从报告中提取器官级描述。然后,我们引入了器官感知报告生成模块,该模块一方面为每个器官提供具体描述,另一方面模拟临床情况,为正常病例提供简短描述。此外,我们还设计了一种自动平衡掩码损失,以确保同时对正常/异常描述和各种器官进行均衡训练。我们的 OaD 直观合理、实用简单,在常用的 IU-Xray 和 MIMIC-CXR 数据集上的表现远远优于 SOTA 替代方案,在 MIMIC-CXR 数据集上的 BLEU-1 提高了 3.4%,在 IU-Xray 数据集上的 BLEU-2 提高了 2.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1