Plasmon-Accelerated Electrocatalysis Based on Gold Nanostructures for Electrochemical Reactions and Biosensing Applications: A Review

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-19 DOI:10.1021/acsanm.4c00325
Swarup Kumar Maji*, Sumitava Khan and Ramakanta Mondal, 
{"title":"Plasmon-Accelerated Electrocatalysis Based on Gold Nanostructures for Electrochemical Reactions and Biosensing Applications: A Review","authors":"Swarup Kumar Maji*,&nbsp;Sumitava Khan and Ramakanta Mondal,&nbsp;","doi":"10.1021/acsanm.4c00325","DOIUrl":null,"url":null,"abstract":"<p >The integration of plasmonic effects in nano electrocatalysis has emerged as a promising avenue for advancing biosensing and energy production technologies. Termed “direct plasmon-accelerated electrocatalysis (PAE)”, this innovative approach harnesses the synergistic interplay between plasmonic materials and electrocatalysts to enhance the efficiency and selectivity of electrochemical processes. By leveraging the unique optical properties of plasmonic nanoparticles, specifically localized surface plasmon resonance (LSPR), coupled with their ability to modulate the local electromagnetic field and promote hot charge transfer, this novel concept holds significant potential for driving advancements in biosensing applications and sustainable energy generation. Moreover, efficiency is ultimately and firmly dependent on the composition and structure of plasmonic metal nanomaterials and their surroundings. Scientists all over the world have done significant research, both theoretical and experimental, on how light interacts with metal nanoparticles to create stronger effects. This opens up a new challenge: combining this with nanoscale electrochemistry to make even more powerful applications. Within this article, we embark on a comprehensive exploration of the fundamental principles, intricate mechanisms, and the latest advancements in direct plasmon-accelerated electrocatalysis by gold nanostructures (Au NSs). Our aim is to provide a deeper understanding of how this technology extends its influence across diverse domains encompassing electrochemical reactions and biosensing applications enhanced by plasmonics. Additionally, we engage in a candid discussion regarding the persistent challenges and the promising avenues that lie ahead, painting a vivid picture of future opportunities in this exciting field.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c00325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of plasmonic effects in nano electrocatalysis has emerged as a promising avenue for advancing biosensing and energy production technologies. Termed “direct plasmon-accelerated electrocatalysis (PAE)”, this innovative approach harnesses the synergistic interplay between plasmonic materials and electrocatalysts to enhance the efficiency and selectivity of electrochemical processes. By leveraging the unique optical properties of plasmonic nanoparticles, specifically localized surface plasmon resonance (LSPR), coupled with their ability to modulate the local electromagnetic field and promote hot charge transfer, this novel concept holds significant potential for driving advancements in biosensing applications and sustainable energy generation. Moreover, efficiency is ultimately and firmly dependent on the composition and structure of plasmonic metal nanomaterials and their surroundings. Scientists all over the world have done significant research, both theoretical and experimental, on how light interacts with metal nanoparticles to create stronger effects. This opens up a new challenge: combining this with nanoscale electrochemistry to make even more powerful applications. Within this article, we embark on a comprehensive exploration of the fundamental principles, intricate mechanisms, and the latest advancements in direct plasmon-accelerated electrocatalysis by gold nanostructures (Au NSs). Our aim is to provide a deeper understanding of how this technology extends its influence across diverse domains encompassing electrochemical reactions and biosensing applications enhanced by plasmonics. Additionally, we engage in a candid discussion regarding the persistent challenges and the promising avenues that lie ahead, painting a vivid picture of future opportunities in this exciting field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电化学反应和生物传感应用的基于金纳米结构的等离子体加速电催化:综述
在纳米电催化中整合等离子效应已成为推动生物传感和能源生产技术发展的一条大有可为的途径。这种创新方法被称为 "直接等离子体加速电催化(PAE)",它利用等离子体材料和电催化剂之间的协同作用来提高电化学过程的效率和选择性。通过利用等离子体纳米粒子的独特光学特性,特别是局部表面等离子体共振(LSPR),再加上其调制局部电磁场和促进热电荷转移的能力,这种新概念在推动生物传感应用和可持续能源生成方面具有巨大潜力。此外,效率归根结底取决于等离子金属纳米材料及其周围环境的组成和结构。对于光如何与金属纳米粒子相互作用以产生更强的效应,全世界的科学家都进行了大量的理论和实验研究。这就提出了一个新的挑战:将其与纳米级电化学相结合,以实现更强大的应用。在本文中,我们将全面探讨金纳米结构(Au NSs)直接等离子体加速电催化的基本原理、复杂机制和最新进展。我们的目的是让读者更深入地了解这项技术如何将其影响力扩展到电化学反应和生物传感应用等不同领域,并通过等离子体技术加以强化。此外,我们还坦诚地讨论了持续存在的挑战和未来大有可为的途径,生动地描绘了这一激动人心的领域的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Role of Charge Accumulation in MoS2/Graphitic Carbon Nitride Nanostructures for Photocatalytic N2 Fixation Multimetallic Prussian Blue Analogue Nanoparticles for Oxygen Evolution Reaction and Efficient Benzyl Alcohol Oxidation Multiscale Lamellar Regulation of Three-Dimensional Graphene-like Nanostructures for Electromagnetic Interference Shielding and Thermal Management Semiconducting 2D Copper(I) Framework for Sub-ppb-Level Ammonia Sensing Superb Photo-Antibacterial/Antibiofilm Activities of BP/WS2 and BP/MoS2 Nanocomposites under Near-Infrared Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1