Mesoporous silica supported ionic liquid materials with high efficacy for CO2 adsorption studies

Divya Jadav , Madhu Pandey , Amit K. Bhojani , Tareq W.M. Amen , Nao Tsunoji , Dheeraj K. Singh , Mahuya Bandyopadhyay
{"title":"Mesoporous silica supported ionic liquid materials with high efficacy for CO2 adsorption studies","authors":"Divya Jadav ,&nbsp;Madhu Pandey ,&nbsp;Amit K. Bhojani ,&nbsp;Tareq W.M. Amen ,&nbsp;Nao Tsunoji ,&nbsp;Dheeraj K. Singh ,&nbsp;Mahuya Bandyopadhyay","doi":"10.1016/j.jil.2024.100102","DOIUrl":null,"url":null,"abstract":"<div><p>CO<sub>2</sub> capture from industrial processes and power plants, contribute to curbing global warming and advancing sustainability efforts. This study involves the design and synthesis of novel mesoporous silica supported ionic liquid based adsorbents for carbon dioxide capture. Utilization of MSILs delves into the efficiency and mechanisms of CO<sub>2</sub> adsorption, offering insights for sustainable carbon capture technologies in combating greenhouse gas emissions. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethyl sulfate and 1-ethyl-3-methylimidazolium methylsulfate ionic liquids were anchored on the surface of mesoporous silica which then led to highly efficient adsorbent material. Simple, efficient and cost saving methodology was performed to synthesize such highly efficient CO<sub>2</sub> adsorbent materials. In addition, we theoretically predicted the favorable interaction mechanism of chosen molecular entities for CO<sub>2</sub> adsorption using density functional theory (DFT) analysis. Theoretical results depict the strong interaction of molecular entities with CO<sub>2</sub> gas molecules which is clearly evident from the experimental findings.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 2","pages":"Article 100102"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772422024000259/pdfft?md5=69390f61c02e1b1c03ae7b9c56315ef2&pid=1-s2.0-S2772422024000259-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422024000259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 capture from industrial processes and power plants, contribute to curbing global warming and advancing sustainability efforts. This study involves the design and synthesis of novel mesoporous silica supported ionic liquid based adsorbents for carbon dioxide capture. Utilization of MSILs delves into the efficiency and mechanisms of CO2 adsorption, offering insights for sustainable carbon capture technologies in combating greenhouse gas emissions. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethyl sulfate and 1-ethyl-3-methylimidazolium methylsulfate ionic liquids were anchored on the surface of mesoporous silica which then led to highly efficient adsorbent material. Simple, efficient and cost saving methodology was performed to synthesize such highly efficient CO2 adsorbent materials. In addition, we theoretically predicted the favorable interaction mechanism of chosen molecular entities for CO2 adsorption using density functional theory (DFT) analysis. Theoretical results depict the strong interaction of molecular entities with CO2 gas molecules which is clearly evident from the experimental findings.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二氧化碳吸附研究的高效介孔二氧化硅支撑离子液体材料
从工业流程和发电厂中捕获二氧化碳有助于遏制全球变暖和推进可持续发展。本研究涉及设计和合成新型介孔二氧化硅离子液体吸附剂,用于二氧化碳捕集。利用 MSILs 研究二氧化碳的吸附效率和机理,为采用可持续碳捕获技术应对温室气体排放提供启示。1-ethyl-3-methylimidazolium tetrafluoroborate、1-ethyl-3-methylimidazolium ethyl sulfate 和 1-ethyl-3-methylimidazolium methylsulfate 离子液体被锚定在介孔二氧化硅表面,从而形成了高效的吸附材料。我们采用简单、高效和节约成本的方法合成了这种高效的二氧化碳吸附材料。此外,我们还利用密度泛函理论(DFT)分析从理论上预测了所选分子实体对二氧化碳吸附的有利相互作用机制。理论结果表明,分子实体与二氧化碳气体分子之间具有很强的相互作用,这一点从实验结果中可以清楚地看出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Phase equilibrium and kinetic studies of choline chloride-based deep eutectic solvents in water system for the inhibition of methane gas hydrate formation Enhancing water circularity: Lactic acid-menthol deep eutectic solvent for efficient fats, oils and grease (FOG) removal and recovery from contaminated waters Designing dicationic organic salts and ionic liquids exhibiting high fluorescence in the solid state Effect of modifiers on the stability of 1‑butyl‑3-methylimidazolium-based ionic liquids Surface-induced nano-generator utilizing a thermo-responsive smart window based on ionic liquid aqueous solution that exhibits lower critical solution temperature type phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1