Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-06-27 DOI:10.1016/j.ejro.2024.100582
Varatharajan Nainamalai , Hemin Ali Qair , Egidijus Pelanis , Håvard Bjørke Jenssen , Åsmund Avdem Fretland , Bjørn Edwin , Ole Jakob Elle , Ilangko Balasingham
{"title":"Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation","authors":"Varatharajan Nainamalai ,&nbsp;Hemin Ali Qair ,&nbsp;Egidijus Pelanis ,&nbsp;Håvard Bjørke Jenssen ,&nbsp;Åsmund Avdem Fretland ,&nbsp;Bjørn Edwin ,&nbsp;Ole Jakob Elle ,&nbsp;Ilangko Balasingham","doi":"10.1016/j.ejro.2024.100582","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.</p></div><div><h3>Methods</h3><p>We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.</p></div><div><h3>Results</h3><p>Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.</p></div><div><h3>Conclusion</h3><p>This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000376/pdfft?md5=425200236243651a581a0c649773fdeb&pid=1-s2.0-S2352047724000376-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.

Methods

We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.

Results

Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.

Conclusion

This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在安全的数据集创建环境中使用人工智能的医疗数据结构和分割自动算法
目的使用基于人工智能(AI)的系统例行收集电子健康记录可为患者、医疗保健中心及其行业带来巨大利益。人工智能模型可用于构建各种非结构化数据。方法我们提出了一种用于医疗数据集管理的半自动工作流程,包括数据构建、研究提取、人工智能地面实况创建和更新。该算法根据新文件名中的关键字创建目录。结果我们的工作重点是组织计算机断层扫描(CT)、磁共振(MR)图像、患者临床数据和分割注释。此外,我们还利用人工智能模型生成了不同的初始标签,这些标签可以通过手动编辑来创建基本真实标签。经人工验证的基本真实标签随后将使用自动算法纳入结构化数据集,供未来研究使用。自动算法和人工智能模型可在医院的二级安全环境中实施,以产生推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1