Electrospun and 3D printed scaffolds based on biocompatible polymers for 3D cultivation of glioblastoma cells in vitro

R.A. Akasov , E.M. Trifanova , M.A. Khvorostina , A.V. Sochilina , S.A. Pavlova , A.I. Alekseeva , G.V. Pavlova , E.V. Khaydukov , V.K. Popov
{"title":"Electrospun and 3D printed scaffolds based on biocompatible polymers for 3D cultivation of glioblastoma cells in vitro","authors":"R.A. Akasov ,&nbsp;E.M. Trifanova ,&nbsp;M.A. Khvorostina ,&nbsp;A.V. Sochilina ,&nbsp;S.A. Pavlova ,&nbsp;A.I. Alekseeva ,&nbsp;G.V. Pavlova ,&nbsp;E.V. Khaydukov ,&nbsp;V.K. Popov","doi":"10.1016/j.stlm.2024.100161","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing techniques capable of fabricating biocompatible scaffolds with a given submicron/micron/supramicron structure are of growing interest for biomedical applications, including tissue engineering and tumor biology studies. Here, we propose antisolvent 3D printing and electrospinning techniques to obtain biopolymer scaffolds with different structural, mechanical, and surface properties to compare the cultivation patterns of glioblastoma cells. We found that human G01 cells, derived from human glioblastoma tumor tissue, were able to colonize the scaffolds in a time-dependent manner; the cells showed high viability as confirmed by colorimetric MTT assay, confocal fluorescence microscopy, and scanning electron microscopy data. Electrospun collagen scaffolds (low porosity, thin 2.75±0.22 μm fibers, low Young's modulus 0.076±0.033 MPa) provided monolayer-like growth of G01 glioblastoma cells with dense cell-cell contacts, while 3D-printed PLGA scaffolds (high porosity, thick ∼150 µm fibers, high Young's modulus 18±2 MPa) stimulated glioblastoma-specific spindle-like morphology. All scaffolds were non-toxic to cells and maintained cell growth for at least 2 weeks. The developed scaffolds could be further used for tumor research as a 3D model of glioblastoma <em>in vitro</em> or for tissue engineering of brain injury.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000201/pdfft?md5=3296f0224a6061ad5aa5aced0dade772&pid=1-s2.0-S2666964124000201-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing techniques capable of fabricating biocompatible scaffolds with a given submicron/micron/supramicron structure are of growing interest for biomedical applications, including tissue engineering and tumor biology studies. Here, we propose antisolvent 3D printing and electrospinning techniques to obtain biopolymer scaffolds with different structural, mechanical, and surface properties to compare the cultivation patterns of glioblastoma cells. We found that human G01 cells, derived from human glioblastoma tumor tissue, were able to colonize the scaffolds in a time-dependent manner; the cells showed high viability as confirmed by colorimetric MTT assay, confocal fluorescence microscopy, and scanning electron microscopy data. Electrospun collagen scaffolds (low porosity, thin 2.75±0.22 μm fibers, low Young's modulus 0.076±0.033 MPa) provided monolayer-like growth of G01 glioblastoma cells with dense cell-cell contacts, while 3D-printed PLGA scaffolds (high porosity, thick ∼150 µm fibers, high Young's modulus 18±2 MPa) stimulated glioblastoma-specific spindle-like morphology. All scaffolds were non-toxic to cells and maintained cell growth for at least 2 weeks. The developed scaffolds could be further used for tumor research as a 3D model of glioblastoma in vitro or for tissue engineering of brain injury.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物相容性聚合物的电纺和三维打印支架用于胶质母细胞瘤细胞的体外三维培养
能够制造具有特定亚微米/微米/超微米结构的生物相容性支架的增材制造技术在生物医学应用(包括组织工程和肿瘤生物学研究)中的兴趣与日俱增。在此,我们提出了反溶剂三维打印和电纺丝技术,以获得具有不同结构、机械和表面特性的生物聚合物支架,从而比较胶质母细胞瘤细胞的培养模式。我们发现,来自人类胶质母细胞瘤肿瘤组织的人类 G01 细胞能够以时间依赖性的方式定植于支架上;经比色法 MTT 检测、共聚焦荧光显微镜和扫描电子显微镜数据证实,细胞表现出较高的存活率。电纺胶原支架(低孔隙率、2.75±0.22 μm细纤维、低杨氏模量0.076±0.033 MPa)为G01胶质母细胞瘤细胞提供了单层生长和密集的细胞间接触,而三维打印PLGA支架(高孔隙率、150 μm粗纤维、高杨氏模量18±2 MPa)刺激了胶质母细胞瘤特异性纺锤体样形态。所有支架对细胞均无毒性,并能维持细胞生长至少两周。所开发的支架可进一步用于肿瘤研究,作为胶质母细胞瘤的体外三维模型或用于脑损伤的组织工程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
期刊最新文献
A novel approach to hallucal sesamoid pathology utilizing a 3D printed patient specific total sesamoid replacement implant: Case series Selective laser sintering at the Point-of-Care 3D printing laboratory in hospitals for cranio-maxillo-facial surgery: A further step into industrial additive manufacturing made available to clinicians Editorial Board Contents 3D-printed β-TCP/Ti6Al4V composite scaffolds for bone regeneration: Process parameter optimization and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1