3D-printed tool for creating standardized burn wounds in ex vivo skin tissues

Mojtaba Javid , Fahimeh Tabatabaei
{"title":"3D-printed tool for creating standardized burn wounds in ex vivo skin tissues","authors":"Mojtaba Javid ,&nbsp;Fahimeh Tabatabaei","doi":"10.1016/j.stlm.2024.100162","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>The development of biomaterials and medical devices for burn wound treatment necessitates thorough investigation through <em>in vitro</em>/<em>ex vivo</em> models before transitioning to animal studies. Establishing a standardized and high-throughput burn wound model in <em>ex vivo</em> skin presents a considerable challenge. Our objective was to address this challenge by developing a practical and cost-effective 3D-printed burn wound tool capable of uniformly inducing burns in 12 skin samples simultaneously.</p></div><div><h3>Material and methods</h3><p>Utilizing Autodesk Inventor software, we designed a 3D model comprising a plate-base component (PBC) and a rod-base component (RBC). The design was exported as a Standard Triangulation Language (STL) file, processed through \"Slicer\" software to generate a G-code file tailored for 3D printing.</p></div><div><h3>Results</h3><p>The Rod-Base component underwent iterative design modifications to optimize weight, airflow, and material consumption, resulting in a final design featuring a unique star shape for enhanced airflow. Simultaneously, the Plate-Base component design evolved to enable easy and secure plate placement, demonstrating compatibility with 12-well plates. The average production time for the model was 14.5 h, with a production cost of approximately $20 (USD), covering printing material and steel rods.</p></div><div><h3>Conclusion</h3><p>In conclusion, this study provides valuable insights into the required equipment and software, empowering researchers to efficiently produce their accurate and cost-effective 3D-printed tool for controlled and reproducible burn wound creation in <em>ex vivo</em> viable skin tissues.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"15 ","pages":"Article 100162"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666964124000213/pdfft?md5=e71eed3aa4ee9a7458a50e76f357507f&pid=1-s2.0-S2666964124000213-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964124000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

The development of biomaterials and medical devices for burn wound treatment necessitates thorough investigation through in vitro/ex vivo models before transitioning to animal studies. Establishing a standardized and high-throughput burn wound model in ex vivo skin presents a considerable challenge. Our objective was to address this challenge by developing a practical and cost-effective 3D-printed burn wound tool capable of uniformly inducing burns in 12 skin samples simultaneously.

Material and methods

Utilizing Autodesk Inventor software, we designed a 3D model comprising a plate-base component (PBC) and a rod-base component (RBC). The design was exported as a Standard Triangulation Language (STL) file, processed through "Slicer" software to generate a G-code file tailored for 3D printing.

Results

The Rod-Base component underwent iterative design modifications to optimize weight, airflow, and material consumption, resulting in a final design featuring a unique star shape for enhanced airflow. Simultaneously, the Plate-Base component design evolved to enable easy and secure plate placement, demonstrating compatibility with 12-well plates. The average production time for the model was 14.5 h, with a production cost of approximately $20 (USD), covering printing material and steel rods.

Conclusion

In conclusion, this study provides valuable insights into the required equipment and software, empowering researchers to efficiently produce their accurate and cost-effective 3D-printed tool for controlled and reproducible burn wound creation in ex vivo viable skin tissues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于在体外皮肤组织中创建标准化烧伤创面的 3D 打印工具
导言用于烧伤创面治疗的生物材料和医疗器械的开发需要通过体外/体内模型进行彻底研究,然后再过渡到动物实验。在体外皮肤中建立标准化、高通量的烧伤创面模型是一项巨大的挑战。我们的目标是通过开发一种实用且具有成本效益的三维打印烧伤工具来应对这一挑战,该工具能够同时在 12 个皮肤样本中均匀地诱导烧伤。设计以标准三角测量语言 (STL) 文件的形式导出,通过 "Slicer "软件进行处理,生成专为三维打印量身定制的 G 代码文件。结果杆基组件经过反复设计修改,优化了重量、气流和材料消耗,最终设计成独特的星形,增强了气流。与此同时,平板底座组件的设计也得到了改进,使平板放置更加方便、安全,并证明了与 12 孔板的兼容性。该模型的平均生产时间为 14.5 小时,生产成本约为 20 美元,其中包括打印材料和钢棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
期刊最新文献
Voluminous fronto-parietal osteomas: Guided resection with patient-specific cutting guides and reconstruction with a 3D printed hydroxyapatite implant A bibliometric analysis of publications in 3D printing in surgery from the web of science database Scalable direct manufacturing of a functional multipurpose wrist-hand orthosis using 3D printing Multi-resin 3D printing of radiopaque customized artificial tooth for revolutionizing preclinical training on root canal treatment Pelvic osteotomies for correction of sagittal imbalance of the spine: An in-silico study comparing four different osteotomies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1