A computer-generated plan to develop an intelligent biosensor for investigation of the inhibition of renin by aliskiren: A journey from inhibition to biosensing
Ali R. Jalalvand , Zahra Feyzi , Soheila Mohammadi , Cyrus Jalili , Sajad Fakhri , Maziar Farshadnia
{"title":"A computer-generated plan to develop an intelligent biosensor for investigation of the inhibition of renin by aliskiren: A journey from inhibition to biosensing","authors":"Ali R. Jalalvand , Zahra Feyzi , Soheila Mohammadi , Cyrus Jalili , Sajad Fakhri , Maziar Farshadnia","doi":"10.1016/j.sbsr.2024.100671","DOIUrl":null,"url":null,"abstract":"<div><p>For the first time, a novel electrochemical biosensor was fabricated based on modification of a rotating glassy carbon electrode with multi-walled carbon nanotubes-ionic liquid, and molecularly imprinted polymers (MIPs) in which renin (Rn), and aliskiren (AK) were used as templates. By immersion the biosensor in Rn, AK, and their binary system (AK-Rn) solutions, the species (Rn, AK, and AK-Rn) were entrapped within the pathways of the MIPs. These processes and investigation of the inhibition of the Rn by AK helped us to obtain higher electrochemical signals for a good monitorization of the system. The effects of experimental parameters on response of the biosensor to AK were optimized by a small central composite design to obtain the highest response. Hydrodynamic cyclic voltametric (HCV), hydrodynamic differential pulse voltammetric (HDPV), and hydrodynamic linear sweep voltammetric (HLSV) data obtained and recorded in order to be analyzed by classical methods and multivariate curve resolution-alternating least squares (MCR-ALS) as an advanced chemometric method. The results of molecular dockings, classical and chemometric analyses confirmed that the Rn was strongly inhibited by the AK which was good evidence to develop a novel biosensing system for determination of Rn. A novel biosensor was developed for determination of the Rn which had an acceptable performance in determination of Rn in the range of 0–9 fM. This approach opened a new way for investigation of enzymes' inhibition, and developing a new generation of electrochemical biosensors for medical and biomedical applications.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100671"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000539/pdfft?md5=f77cae52d1c1b80e1fb4fcb3cd5bc0dd&pid=1-s2.0-S2214180424000539-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For the first time, a novel electrochemical biosensor was fabricated based on modification of a rotating glassy carbon electrode with multi-walled carbon nanotubes-ionic liquid, and molecularly imprinted polymers (MIPs) in which renin (Rn), and aliskiren (AK) were used as templates. By immersion the biosensor in Rn, AK, and their binary system (AK-Rn) solutions, the species (Rn, AK, and AK-Rn) were entrapped within the pathways of the MIPs. These processes and investigation of the inhibition of the Rn by AK helped us to obtain higher electrochemical signals for a good monitorization of the system. The effects of experimental parameters on response of the biosensor to AK were optimized by a small central composite design to obtain the highest response. Hydrodynamic cyclic voltametric (HCV), hydrodynamic differential pulse voltammetric (HDPV), and hydrodynamic linear sweep voltammetric (HLSV) data obtained and recorded in order to be analyzed by classical methods and multivariate curve resolution-alternating least squares (MCR-ALS) as an advanced chemometric method. The results of molecular dockings, classical and chemometric analyses confirmed that the Rn was strongly inhibited by the AK which was good evidence to develop a novel biosensing system for determination of Rn. A novel biosensor was developed for determination of the Rn which had an acceptable performance in determination of Rn in the range of 0–9 fM. This approach opened a new way for investigation of enzymes' inhibition, and developing a new generation of electrochemical biosensors for medical and biomedical applications.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.