Shaopeng Wang , Yang Meng , Liang Chen , Yicheng Zhang , Junxin Wang , Shuangtao Chen , Yu Hou
{"title":"Experimental study on the cryogenic distillation system for high-purity liquid nitrogen under offshore conditions","authors":"Shaopeng Wang , Yang Meng , Liang Chen , Yicheng Zhang , Junxin Wang , Shuangtao Chen , Yu Hou","doi":"10.1016/j.cryogenics.2024.103885","DOIUrl":null,"url":null,"abstract":"<div><p>Cryogenic distillation is widely acknowledged as the primary industrial method for producing liquid nitrogen of high purity. However, the distillation process is highly sensitive to tilting and swinging, which limits the application of cryogenic air separation in offshore infrastructures. This paper proposes a small-scale air separation process that incorporates a dual-column distillation to enhance distillation performance under offshore conditions. Experiments were conducted under standard (no-tilting and stationary), tilting, and swinging conditions. The results indicate that the proposed distillation plant can maintain nitrogen purity to a certain extent under offshore conditions. The product impurity (oxygen content) increased significantly as the tilting angles increased beyond 4° for horizontal titling and 3° for longitudinal titling, respectively. The distillation performance was less affected by the swing than the tilting. High-purity nitrogen could be produced when swing amplitude was within ±10° and swing period was between 6 s and 11 s. The results can provide engineering guidance for the design and installation of the columns of air-separation plants.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":"141 ","pages":"Article 103885"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001122752400105X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cryogenic distillation is widely acknowledged as the primary industrial method for producing liquid nitrogen of high purity. However, the distillation process is highly sensitive to tilting and swinging, which limits the application of cryogenic air separation in offshore infrastructures. This paper proposes a small-scale air separation process that incorporates a dual-column distillation to enhance distillation performance under offshore conditions. Experiments were conducted under standard (no-tilting and stationary), tilting, and swinging conditions. The results indicate that the proposed distillation plant can maintain nitrogen purity to a certain extent under offshore conditions. The product impurity (oxygen content) increased significantly as the tilting angles increased beyond 4° for horizontal titling and 3° for longitudinal titling, respectively. The distillation performance was less affected by the swing than the tilting. High-purity nitrogen could be produced when swing amplitude was within ±10° and swing period was between 6 s and 11 s. The results can provide engineering guidance for the design and installation of the columns of air-separation plants.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics