{"title":"Solid state microdosimetry of a 148 MeV proton spread-out Bragg peak with a pixelated silicon telescope","authors":"D. Bortot , D. Mazzucconi , A. Pola , S. Agosteo","doi":"10.1016/j.radmeas.2024.107220","DOIUrl":null,"url":null,"abstract":"<div><p>A constant value of the Relative Biological Effectiveness (<span><math><mrow><mi>R</mi><mi>B</mi><mi>E</mi></mrow></math></span>), equal to 1.1, to weight the physical dose of proton therapy treatment planning collides with the experimental evidence of an increase of effectiveness along the depth dose profile, especially at the end of the particle range. In this context, it is desirable to develop new optimized treatment planning systems that account for a variable RBE when weighting the physical dose. In particular, due to the increasing interest on microdosimetry as a possible methodology for measuring physical quantities correlated with the biological effectiveness of the therapeutic beam, the development of new Tissue-Equivalent Proportional Counters (TEPCs) specifically designed for the clinical environment are in progress.</p><p>In this framework, the silicon technology allows to produce solid state detectors of real micrometric dimensions. This is a valid alternative to the TEPC from a practical point of view, being simple, easy-of-use and more versatile. The feasibility of a solid state microdosimeter based on a monolithic double stage silicon telescope has been previously proposed and deeply investigated by comparing its response to the one obtained by reference TEPCs in various radiation fields. The device is constituted by a matrix of cylindrical elements, 2 μm in thickness and 9 μm in diameter, coupled to a single E stage, 500 μm in thickness. Each segmented ΔE stage acts as a solid state microdosimeter, while the E stage gives information on the energy of the impinging proton up to about 8 MeV.</p><p>This work is dedicated to the description of the microdosimetric characterization of the 148 MeV energy-modulated proton beam at the radiobiological research line of the Trento Proton Therapy Centre by means of a pixelated silicon microdosimeter. All measurements were carried out at different positions across the spread-out Bragg peak (SOBP) and the corresponding microdosimetric distributions were derived by applying a novel extrapolation algorithm. Finally, microdosimetric assessment of Relative Biological Effectiveness was carried out by weighting the dose distribution of the lineal energy with the Loncol's biological weighting function. Benefits and possible limitations of this approach are discussed.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724001689/pdfft?md5=4072e292a26db49caf1e84cad898f88c&pid=1-s2.0-S1350448724001689-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724001689","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A constant value of the Relative Biological Effectiveness (), equal to 1.1, to weight the physical dose of proton therapy treatment planning collides with the experimental evidence of an increase of effectiveness along the depth dose profile, especially at the end of the particle range. In this context, it is desirable to develop new optimized treatment planning systems that account for a variable RBE when weighting the physical dose. In particular, due to the increasing interest on microdosimetry as a possible methodology for measuring physical quantities correlated with the biological effectiveness of the therapeutic beam, the development of new Tissue-Equivalent Proportional Counters (TEPCs) specifically designed for the clinical environment are in progress.
In this framework, the silicon technology allows to produce solid state detectors of real micrometric dimensions. This is a valid alternative to the TEPC from a practical point of view, being simple, easy-of-use and more versatile. The feasibility of a solid state microdosimeter based on a monolithic double stage silicon telescope has been previously proposed and deeply investigated by comparing its response to the one obtained by reference TEPCs in various radiation fields. The device is constituted by a matrix of cylindrical elements, 2 μm in thickness and 9 μm in diameter, coupled to a single E stage, 500 μm in thickness. Each segmented ΔE stage acts as a solid state microdosimeter, while the E stage gives information on the energy of the impinging proton up to about 8 MeV.
This work is dedicated to the description of the microdosimetric characterization of the 148 MeV energy-modulated proton beam at the radiobiological research line of the Trento Proton Therapy Centre by means of a pixelated silicon microdosimeter. All measurements were carried out at different positions across the spread-out Bragg peak (SOBP) and the corresponding microdosimetric distributions were derived by applying a novel extrapolation algorithm. Finally, microdosimetric assessment of Relative Biological Effectiveness was carried out by weighting the dose distribution of the lineal energy with the Loncol's biological weighting function. Benefits and possible limitations of this approach are discussed.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.