{"title":"Chitosan nanoparticle delivery systems: An effective approach to enhancing efficacy and safety of anticancer drugs","authors":"Anil Kumar Grewal, Raj Kumar Salar","doi":"10.1016/j.ntm.2024.100040","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, cancer is the leading cause of death globally. In the absence of specific treatment and early diagnosis, procedures like surgery, chemotherapy, and radiation therapy are often used to manage the disease. However, these approaches often fail to control cancer due to inefficacy, nonspecific distribution, and side effects of the drugs. Anticancer drugs are essential in reducing cancer cell growth and helping damage those cells. Anticancer drugs often cause severe side effects and have limited bioavailability due to their nonspecific distribution throughout the body. Therefore, the development of intelligent drug release systems is essential. Nanoparticle delivery systems are promising strategies to improve therapeutic efficacy and safety, overcoming challenges. Among these systems, a natural polysaccharide called chitosan, a derivative of chitin, has gained considerable attention as a biocompatible, biodegradable, and mucoadhesive material for creating nanoparticles. Chitosan nanoparticles provide several advantages, including improved stability, cellular uptake, solubility of anticancer drugs, modulation of release kinetics, and biodistribution. Additionally, chitosan nanoparticles can be modified on their surface with ligands or stimuli-responsive moieties to achieve targeted delivery to specific cancer cells or tissues. This review explores recent advances in chitosan-based nanoparticle drug delivery, efficacy, and their applications in cancer therapy.</p></div>","PeriodicalId":100941,"journal":{"name":"Nano TransMed","volume":"3 ","pages":"Article 100040"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2790676024000116/pdfft?md5=0baa56eb81fcc0719501f737fb598489&pid=1-s2.0-S2790676024000116-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano TransMed","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2790676024000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, cancer is the leading cause of death globally. In the absence of specific treatment and early diagnosis, procedures like surgery, chemotherapy, and radiation therapy are often used to manage the disease. However, these approaches often fail to control cancer due to inefficacy, nonspecific distribution, and side effects of the drugs. Anticancer drugs are essential in reducing cancer cell growth and helping damage those cells. Anticancer drugs often cause severe side effects and have limited bioavailability due to their nonspecific distribution throughout the body. Therefore, the development of intelligent drug release systems is essential. Nanoparticle delivery systems are promising strategies to improve therapeutic efficacy and safety, overcoming challenges. Among these systems, a natural polysaccharide called chitosan, a derivative of chitin, has gained considerable attention as a biocompatible, biodegradable, and mucoadhesive material for creating nanoparticles. Chitosan nanoparticles provide several advantages, including improved stability, cellular uptake, solubility of anticancer drugs, modulation of release kinetics, and biodistribution. Additionally, chitosan nanoparticles can be modified on their surface with ligands or stimuli-responsive moieties to achieve targeted delivery to specific cancer cells or tissues. This review explores recent advances in chitosan-based nanoparticle drug delivery, efficacy, and their applications in cancer therapy.