Binding modes of the metabolites docosahexaenoic acid, eicosapentaenoic acid, and eicosapentaenoic acid ethyl ester from Caulerpa racemosa as COX-2 inhibitors revealed via metabolomics and molecular dynamics
Turmidzi Fath , Citra Fragrantia Theodorea , Erik Idrus , Izumi Mashima , Dewi Fatma Suniarti , Sri Angky Soekanto
{"title":"Binding modes of the metabolites docosahexaenoic acid, eicosapentaenoic acid, and eicosapentaenoic acid ethyl ester from Caulerpa racemosa as COX-2 inhibitors revealed via metabolomics and molecular dynamics","authors":"Turmidzi Fath , Citra Fragrantia Theodorea , Erik Idrus , Izumi Mashima , Dewi Fatma Suniarti , Sri Angky Soekanto","doi":"10.1016/j.imu.2024.101539","DOIUrl":null,"url":null,"abstract":"<div><p>A total of 116 metabolites of <em>Caulerpa racemosa</em> were identified. However, only three (DHA, EPA, and EPAS) were found to have high anti-inflammatory potential, with Pa scores ranging from 0.764 to 0,827. The inhibition constant (Ki) and binding energy interactions with COX-2 revealed by DHA (−8.83 kcal/mol: 0.338 μM), EPA (−8.35 kcal/mol: 0.763 μM), EPAS (−8.05 kcal/mol: 1.25 μM). They were used to bind to the fundamental residues of COX-2 (TYR 348, VAL 349, LEU 384, TYR 385, and TRP 387). The result of molecular dynamics showed that DHA, EPA, and EPAS had high stability while interacting with COX-2 in 310 K. The stabilities were 1.8 Å for DHA from 60 Ns to 200 Ns, 2.0 Å for EPA from 75 Ns to 200 Ns, and 2.2 Å for EPAS from 100 Ns to 200 Ns. Additionally, the potential energy of DHA (−1.069.250 eV) was higher compared with that of EPA (−1.069.247 eV) and EPAS (−1.069.220 eV). This data shows that DHA, EPA, and EPAS could stably inhibit COX-2 by blocking the transcriptional regulation of COX-2 via TYR348, VAL349, LEU384, TYR385, and TRP387.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"49 ","pages":"Article 101539"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824000959/pdfft?md5=193620962fc821d638c5d23edf739b9b&pid=1-s2.0-S2352914824000959-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824000959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
A total of 116 metabolites of Caulerpa racemosa were identified. However, only three (DHA, EPA, and EPAS) were found to have high anti-inflammatory potential, with Pa scores ranging from 0.764 to 0,827. The inhibition constant (Ki) and binding energy interactions with COX-2 revealed by DHA (−8.83 kcal/mol: 0.338 μM), EPA (−8.35 kcal/mol: 0.763 μM), EPAS (−8.05 kcal/mol: 1.25 μM). They were used to bind to the fundamental residues of COX-2 (TYR 348, VAL 349, LEU 384, TYR 385, and TRP 387). The result of molecular dynamics showed that DHA, EPA, and EPAS had high stability while interacting with COX-2 in 310 K. The stabilities were 1.8 Å for DHA from 60 Ns to 200 Ns, 2.0 Å for EPA from 75 Ns to 200 Ns, and 2.2 Å for EPAS from 100 Ns to 200 Ns. Additionally, the potential energy of DHA (−1.069.250 eV) was higher compared with that of EPA (−1.069.247 eV) and EPAS (−1.069.220 eV). This data shows that DHA, EPA, and EPAS could stably inhibit COX-2 by blocking the transcriptional regulation of COX-2 via TYR348, VAL349, LEU384, TYR385, and TRP387.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.