Developing heart stroke prediction model using deep learning with combination of fixed row initial centroid method with Navie Bayes, Decision Tree, and Artificial Neural Network

Q4 Engineering Measurement Sensors Pub Date : 2024-06-28 DOI:10.1016/j.measen.2024.101237
T. Swathi Priyadarshini, Mohd Abdul Hameed
{"title":"Developing heart stroke prediction model using deep learning with combination of fixed row initial centroid method with Navie Bayes, Decision Tree, and Artificial Neural Network","authors":"T. Swathi Priyadarshini,&nbsp;Mohd Abdul Hameed","doi":"10.1016/j.measen.2024.101237","DOIUrl":null,"url":null,"abstract":"<div><p>The present research and study, aimed to develop a new predictive model that easily navigate to the challenges of risk factors causing a heart stroke and accurately detect the early chances of having the stroke. Knowledge of risk factors impacting in the deterioration of a patient's health in causing the severity of heart stroke, helps future research work in prognosis of heart stoke and implement feature selection techniques by considering all such risk factors. Clustering of binary classes perfectly, without any noise, is a major advantage in predicting heart stroke patients' condition in their early stages of severity. Novel initial centroid selection method FRM is developed which considered the best until date resulting in 100 % clustering of patients into binary classes, which significantly contribute to the enhancement of accuracy results. Major objective is integrating clustering technique with classification algorithms Naïve Bayes, Decision Tree and Artificial Neural Network and built three prediction systems, FRM-NB, FRM-DT, and FRM-ANN performed the best when compared to existing systems, resulting in the best accuracy values in predicting early risk of heart stroke and reducing chances of recurrent heart strokes. We have achieved the best accuracy of 94 % (FRM-NB) and 97 % (FRM-DT), sensitivity of 90 % (FRM-NB) and 95 % (FRM-DT), specificity score of 97 % (FRM-NB) AND 90 % (FRM-DT) and AUC-ROC score of 0.976 (FRM-NB) and 0.953(FRM-DT). FRM-ANN model achieved an accuracy of 98 % with 100 % sensitivity and 0.99 score of AUC, which till date no existing research has achieved.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101237"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002137/pdfft?md5=243a0e91eeea496a1f49e1fba27b26d1&pid=1-s2.0-S2665917424002137-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The present research and study, aimed to develop a new predictive model that easily navigate to the challenges of risk factors causing a heart stroke and accurately detect the early chances of having the stroke. Knowledge of risk factors impacting in the deterioration of a patient's health in causing the severity of heart stroke, helps future research work in prognosis of heart stoke and implement feature selection techniques by considering all such risk factors. Clustering of binary classes perfectly, without any noise, is a major advantage in predicting heart stroke patients' condition in their early stages of severity. Novel initial centroid selection method FRM is developed which considered the best until date resulting in 100 % clustering of patients into binary classes, which significantly contribute to the enhancement of accuracy results. Major objective is integrating clustering technique with classification algorithms Naïve Bayes, Decision Tree and Artificial Neural Network and built three prediction systems, FRM-NB, FRM-DT, and FRM-ANN performed the best when compared to existing systems, resulting in the best accuracy values in predicting early risk of heart stroke and reducing chances of recurrent heart strokes. We have achieved the best accuracy of 94 % (FRM-NB) and 97 % (FRM-DT), sensitivity of 90 % (FRM-NB) and 95 % (FRM-DT), specificity score of 97 % (FRM-NB) AND 90 % (FRM-DT) and AUC-ROC score of 0.976 (FRM-NB) and 0.953(FRM-DT). FRM-ANN model achieved an accuracy of 98 % with 100 % sensitivity and 0.99 score of AUC, which till date no existing research has achieved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习,结合纳维贝叶斯、决策树和人工神经网络的固定行初始中心点法,开发心脏中风预测模型
本研究旨在开发一种新的预测模型,轻松应对导致心脏中风的危险因素的挑战,并准确检测出中风的早期几率。了解影响患者健康状况恶化、导致中风严重程度的风险因素,有助于今后开展心脏病预后研究工作,并通过考虑所有此类风险因素来实施特征选择技术。二元类的完美聚类,没有任何噪音,是预测心脏病中风患者病情早期严重程度的一大优势。新开发的初始中心点选择方法 FRM 被认为是迄今为止最好的方法,可将患者 100%聚类为二元类别,大大提高了准确率。主要目标是将聚类技术与奈夫贝叶斯、决策树和人工神经网络分类算法相结合,并建立了三个预测系统,与现有系统相比,FRM-NB、FRM-DT 和 FRM-ANN 的性能最佳,在预测早期心脏中风风险和降低复发性心脏中风几率方面达到了最佳准确度值。我们取得的最佳准确率为 94 %(FRM-NB)和 97 %(FRM-DT),灵敏度为 90 %(FRM-NB)和 95 %(FRM-DT),特异性为 97 %(FRM-NB)和 90 %(FRM-DT),AUC-ROC 得分为 0.976(FRM-NB)和 0.953(FRM-DT)。FRM-ANN 模型的准确度达到 98%,灵敏度达到 100%,AUC 得分为 0.99,迄今为止还没有任何研究能达到这一水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Augmented and virtual reality based segmentation algorithm for human pose detection in wearable cameras Exploring EEG-Based biomarkers for improved early Alzheimer's disease detection: A feature-based approach utilizing machine learning Deep learning model for smart wearables device to detect human health conduction Review and analysis on numerical simulation and compact modeling of InGaZno thin-film transistor for display SENSOR applications Artificial intelligence and IoT driven system architecture for municipality waste management in smart cities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1