{"title":"Recent progress in elastic and inelastic neutron scattering for chemical, polymeric, and biological investigations","authors":"Tingting Wang , Dong Liu , Xiaobo Du","doi":"10.1016/j.cossms.2024.101175","DOIUrl":null,"url":null,"abstract":"<div><p>Neutron scattering is widely used in a variety of disciplines. Neutrons differ from other structural probes such as X-rays and electrons in that they are neutral, have deep penetration ability, and have high sensitivity to light elements. These characteristics afford neutron based probes unique advantages for investigating the structure and structural evolution in chemical, polymeric, and biological systems, especially in systems where hydrogen is enriched. Moreover, the range of energy and scattering vector accessible to neutrons are consistent with the natural time and length scales of these materials. This review will demonstrate recent applications of both elastic and inelastic/quasi-elastic neutron scattering (IE/QENS). The current capabilities and characteristics of techniques such as small angle neutron scattering (SANS), ultra-small angle neutron scattering (USANS), spin echo small angle neutron scattering (SESANS), neutron diffraction will be reviewed via examples. IE/QENS such as triple-axis spectrometer (TAS), neutron spin echo (NSE), and neutron backscattering spectrometer (BSS) will be introduced as well. Moreover, we will also review the use of instrumentation with recent defining examples around the world as well as on the neutron scattering platform of 20 MW China Mianyang Research Reactor (CMRR).</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"31 ","pages":"Article 101175"},"PeriodicalIF":12.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135902862400041X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutron scattering is widely used in a variety of disciplines. Neutrons differ from other structural probes such as X-rays and electrons in that they are neutral, have deep penetration ability, and have high sensitivity to light elements. These characteristics afford neutron based probes unique advantages for investigating the structure and structural evolution in chemical, polymeric, and biological systems, especially in systems where hydrogen is enriched. Moreover, the range of energy and scattering vector accessible to neutrons are consistent with the natural time and length scales of these materials. This review will demonstrate recent applications of both elastic and inelastic/quasi-elastic neutron scattering (IE/QENS). The current capabilities and characteristics of techniques such as small angle neutron scattering (SANS), ultra-small angle neutron scattering (USANS), spin echo small angle neutron scattering (SESANS), neutron diffraction will be reviewed via examples. IE/QENS such as triple-axis spectrometer (TAS), neutron spin echo (NSE), and neutron backscattering spectrometer (BSS) will be introduced as well. Moreover, we will also review the use of instrumentation with recent defining examples around the world as well as on the neutron scattering platform of 20 MW China Mianyang Research Reactor (CMRR).
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field