Improving oxygen reduction reaction of microbial fuel cell by silver vanadate blended functionalized multiwall carbon nanotubes as cathode

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2024-06-30 DOI:10.1016/j.fuel.2024.132367
Zahra Khaksar, Maryam Farahmand Habibi, Majid Arvand, Romina Rezapour
{"title":"Improving oxygen reduction reaction of microbial fuel cell by silver vanadate blended functionalized multiwall carbon nanotubes as cathode","authors":"Zahra Khaksar,&nbsp;Maryam Farahmand Habibi,&nbsp;Majid Arvand,&nbsp;Romina Rezapour","doi":"10.1016/j.fuel.2024.132367","DOIUrl":null,"url":null,"abstract":"<div><p>The power generation capacity of the microbial fuel cell (MFC) depends largely on the properties of the cathode material. The key to achieving remarkable performance of MFC is to have good oxygen reduction reaction (ORR) activity. In this research, a novel, facile, and low-cost method involving surfactant-less stirring and ultrasound steps was used to prepare the catalyst. The silver vanadate blended functionalized multiwall carbon nanotubes (AgVO<sub>3</sub>@f-MWCNTs) illustrated a high ORR activity with a maximum power density of 106.8 mW m<sup>−2</sup>, which was about 3.73, and 2.84 times higher than that of AgVO<sub>3</sub> (28.62 mW m<sup>−2</sup>) and f-MWCNTs (37.55 mW m<sup>−2</sup>), respectively. The f-MWCNTs provide a large specific surface area that can increase the loading and dispersion of active sites, together with the synergistic catalysis of AgVO<sub>3</sub> active sites, greatly improving the ORR performance of the MFC. Furthermore, the AgVO<sub>3</sub>@f-MWCNTs cathode catalyst demonstrated that the composite materials had great potential for new green energy strategies.</p></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124015151","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The power generation capacity of the microbial fuel cell (MFC) depends largely on the properties of the cathode material. The key to achieving remarkable performance of MFC is to have good oxygen reduction reaction (ORR) activity. In this research, a novel, facile, and low-cost method involving surfactant-less stirring and ultrasound steps was used to prepare the catalyst. The silver vanadate blended functionalized multiwall carbon nanotubes (AgVO3@f-MWCNTs) illustrated a high ORR activity with a maximum power density of 106.8 mW m−2, which was about 3.73, and 2.84 times higher than that of AgVO3 (28.62 mW m−2) and f-MWCNTs (37.55 mW m−2), respectively. The f-MWCNTs provide a large specific surface area that can increase the loading and dispersion of active sites, together with the synergistic catalysis of AgVO3 active sites, greatly improving the ORR performance of the MFC. Furthermore, the AgVO3@f-MWCNTs cathode catalyst demonstrated that the composite materials had great potential for new green energy strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用钒酸银混合功能化多壁碳纳米管作为阴极改善微生物燃料电池的氧还原反应
微生物燃料电池(MFC)的发电能力在很大程度上取决于阴极材料的特性。微生物燃料电池要想获得出色的性能,关键在于具有良好的氧还原反应(ORR)活性。本研究采用了一种新颖、简便、低成本的方法来制备催化剂,其中包括无表面活性剂搅拌和超声步骤。钒酸银混合功能化多壁碳纳米管(AgVO3@f-MWCNTs)具有很高的 ORR 活性,最大功率密度为 106.8 mW m-2,分别是 AgVO3(28.62 mW m-2)和 f-MWCNTs (37.55 mW m-2)的 3.73 倍和 2.84 倍。f-MWCNTs 具有较大的比表面积,可以增加活性位点的负载量和分散度,加上 AgVO3 活性位点的协同催化作用,大大提高了 MFC 的 ORR 性能。此外,AgVO3@f-MWCNTs 阴极催化剂表明,复合材料在新型绿色能源战略中具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Valorization of kitchen waste hydrolysis residue for green solid fuel application: Conversion mechanism and fuel characteristics Quantitative three-dimensional reconstruction of cellular flame area for spherical hydrogen-air flames Numerical investigation of the hydrogen-enriched ammonia-diesel RCCI combustion engine High vanadium tolerant FCC catalyst by barium titanate as metal trap and passivator Optimization of a methanol/NOx combustion mechanism based on a large amount of experimental data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1