Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Science Pub Date : 2024-06-12 DOI:10.1016/j.jocs.2024.102355
Monika Nagy-Huber, Volker Roth
{"title":"Physics-informed boundary integral networks (PIBI-Nets): A data-driven approach for solving partial differential equations","authors":"Monika Nagy-Huber,&nbsp;Volker Roth","doi":"10.1016/j.jocs.2024.102355","DOIUrl":null,"url":null,"abstract":"<div><p>Partial differential equations (PDEs) are widely used to describe relevant phenomena in dynamical systems. In real-world applications, we commonly need to combine formal PDE models with (potentially noisy) observations. This is especially relevant in settings where we lack information about boundary or initial conditions, or where we need to identify unknown model parameters. In recent years, Physics-Informed Neural Networks (PINNs) have become a popular tool for this kind of problems. In high-dimensional settings, however, PINNs often suffer from computational problems because they usually require dense collocation points over the entire computational domain. To address this problem, we present Physics-Informed Boundary Integral Networks (PIBI-Nets) as a data-driven approach for solving PDEs in one dimension less than the original problem space. PIBI-Nets only require points at the computational domain boundary, while still achieving highly accurate results. Moreover, PIBI-Nets clearly outperform PINNs in several practical settings. Exploiting elementary properties of fundamental solutions of linear differential operators, we present a principled and simple way to handle point sources in inverse problems. We demonstrate the excellent performance of PIBI-Nets for the Laplace and Poisson equations, both on artificial datasets and within a real-world application concerning the reconstruction of groundwater flows.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877750324001480/pdfft?md5=ef935b3248f3e9ad9542948ffdedafa3&pid=1-s2.0-S1877750324001480-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001480","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Partial differential equations (PDEs) are widely used to describe relevant phenomena in dynamical systems. In real-world applications, we commonly need to combine formal PDE models with (potentially noisy) observations. This is especially relevant in settings where we lack information about boundary or initial conditions, or where we need to identify unknown model parameters. In recent years, Physics-Informed Neural Networks (PINNs) have become a popular tool for this kind of problems. In high-dimensional settings, however, PINNs often suffer from computational problems because they usually require dense collocation points over the entire computational domain. To address this problem, we present Physics-Informed Boundary Integral Networks (PIBI-Nets) as a data-driven approach for solving PDEs in one dimension less than the original problem space. PIBI-Nets only require points at the computational domain boundary, while still achieving highly accurate results. Moreover, PIBI-Nets clearly outperform PINNs in several practical settings. Exploiting elementary properties of fundamental solutions of linear differential operators, we present a principled and simple way to handle point sources in inverse problems. We demonstrate the excellent performance of PIBI-Nets for the Laplace and Poisson equations, both on artificial datasets and within a real-world application concerning the reconstruction of groundwater flows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理信息边界积分网络(PIBI-Nets):数据驱动的偏微分方程求解方法
偏微分方程 (PDE) 广泛用于描述动态系统中的相关现象。在实际应用中,我们通常需要将正式的 PDE 模型与(可能存在噪声的)观测结果相结合。在缺乏边界或初始条件信息或需要确定未知模型参数的情况下,这一点尤为重要。近年来,物理信息神经网络(PINN)已成为解决此类问题的常用工具。然而,在高维环境下,PINNs 通常会遇到计算问题,因为它们通常需要整个计算域的密集配准点。为了解决这个问题,我们提出了物理信息边界积分网络(PIBI-Nets),作为一种数据驱动方法,用于在比原始问题空间小一维的空间内求解 PDE。PIBI-Nets 只需要计算域边界上的点,同时还能获得高度精确的结果。此外,PIBI-Nets 在多个实际环境中的性能明显优于 PINNs。利用线性微分算子基本解的基本特性,我们提出了一种原则性的简单方法来处理逆问题中的点源。我们展示了 PIBI-Nets 在拉普拉斯方程和泊松方程方面的卓越性能,无论是在人工数据集上还是在有关地下水流重建的实际应用中都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
期刊最新文献
AFF-BPL: An adaptive feature fusion technique for the diagnosis of autism spectrum disorder using Bat-PSO-LSTM based framework Data-driven robust optimization in the face of large-scale datasets: An incremental learning approach VEGF-ERCNN: A deep learning-based model for prediction of vascular endothelial growth factor using ensemble residual CNN A new space–time localized meshless method based on coupling radial and polynomial basis functions for solving singularly perturbed nonlinear Burgers’ equation Implementation of the emulator-based component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1