Modeling and validation for performance analysis and impedance spectroscopy characterization of lithium-ion batteries

Jin Zhao, Jaber A. Abu Qahouq
{"title":"Modeling and validation for performance analysis and impedance spectroscopy characterization of lithium-ion batteries","authors":"Jin Zhao,&nbsp;Jaber A. Abu Qahouq","doi":"10.1016/j.nxener.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><p>A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000589/pdfft?md5=3c67d452a9765517e0c40f77725bbffd&pid=1-s2.0-S2949821X24000589-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池性能分析和阻抗光谱特性的建模和验证
本文提出了一个参数化的锂离子电池性能分析数学模型,重点关注电池放电行为和电化学阻抗谱曲线。该模型利用各种物理特性作为输入,以互补的方式由两个主要的子模型组成。第一个子模型是一个经过调整的多伊尔-富勒-纽曼(DFN)框架,用于模拟电池内部的电化学、热力学和传输现象。第二个子模型是经过校准的固体电解质相间层(SEI)形成模型。该模型强调反应过程、层生长和电导变化方面的电气动态响应。等效电路元件值由两个子模型的输出得出,反映了电池物理参数的变化。然后将模拟放电曲线和电化学阻抗谱(EIS)曲线与经验结果进行对比验证,结果显示两者具有良好的一致性。这种建模方法旨在弥合物理模型和等效电路模型(ECM)之间的差距,从而实现更准确的电池性能预测和运行状态跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1