{"title":"Modeling and validation for performance analysis and impedance spectroscopy characterization of lithium-ion batteries","authors":"Jin Zhao, Jaber A. Abu Qahouq","doi":"10.1016/j.nxener.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><p>A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"5 ","pages":"Article 100153"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000589/pdfft?md5=3c67d452a9765517e0c40f77725bbffd&pid=1-s2.0-S2949821X24000589-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A parameterized mathematical model for Lithium-ion battery cell is presented in this paper for performance analysis with a particular focus on battery discharge behavior and electrochemical impedance spectroscopy profile. The model utilizes various physical properties as input and consists of two major sub-models in a complementary manner. The first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to simulate electrochemical, thermodynamic, and transport phenomena within the battery. The second sub-model is a calibrated solid-electrolyte interphase (SEI) layer formation model. This model emphasizes the electrical dynamic response in terms of the reaction process, layer growth, and conductance change. The equivalent circuit component values are derived from the outputs of both sub-models, reflecting the battery’s changing physical parameters. The simulated discharge curves and electrochemical impedance spectroscopy (EIS) profiles are then provided with a comparison against empirical results for validation, which exhibit good agreement. This modeling methodology aims to bridge the gap between the physical model and the equivalent circuit model (ECM), enabling more accurate battery performance predictions and operation status tracking.