Probing phase transformation and dislocation evolution in high-entropy alloy under cyclic loadings

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-06-28 DOI:10.1016/j.matlet.2024.136940
Jiacheng Zhang, Mao Zhang, Lei Deng, Junsong Jin, Pan Gong, Xuefeng Tang, Xinyun Wang
{"title":"Probing phase transformation and dislocation evolution in high-entropy alloy under cyclic loadings","authors":"Jiacheng Zhang,&nbsp;Mao Zhang,&nbsp;Lei Deng,&nbsp;Junsong Jin,&nbsp;Pan Gong,&nbsp;Xuefeng Tang,&nbsp;Xinyun Wang","doi":"10.1016/j.matlet.2024.136940","DOIUrl":null,"url":null,"abstract":"<div><p>Stress-induced FCC-BCC phase transformation plays a crucial role in the mechanical behaviors of high-entropy alloys (HEAs). While there has been extensive research on this transformation during monotonic deformation, studies on fatigue behavior are extremely limited. Here, we use molecular dynamics simulations to investigate phase transformation and dislocation evolution in HEAs under strain-controlled symmetric tension–compression cycles. Our results show that cyclic deformation behavior is sensitive to strain amplitude, revealing three distinct cyclic responses. Notably, a progressive FCC-BCC phase transformation process occurs at a high strain amplitude of 4.8%. Grain boundaries and their triple junctions are identified as preferred sites for phase transformation under cyclic loading conditions. These findings provide valuable atomic-scale insights for understanding fatigue deformation in HEAs with transformation-induced plasticity.</p></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24010796","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stress-induced FCC-BCC phase transformation plays a crucial role in the mechanical behaviors of high-entropy alloys (HEAs). While there has been extensive research on this transformation during monotonic deformation, studies on fatigue behavior are extremely limited. Here, we use molecular dynamics simulations to investigate phase transformation and dislocation evolution in HEAs under strain-controlled symmetric tension–compression cycles. Our results show that cyclic deformation behavior is sensitive to strain amplitude, revealing three distinct cyclic responses. Notably, a progressive FCC-BCC phase transformation process occurs at a high strain amplitude of 4.8%. Grain boundaries and their triple junctions are identified as preferred sites for phase transformation under cyclic loading conditions. These findings provide valuable atomic-scale insights for understanding fatigue deformation in HEAs with transformation-induced plasticity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探测循环载荷下高熵合金的相变和位错演变
应力诱导的 FCC-BCC 相变在高熵合金 (HEA) 的机械行为中起着至关重要的作用。虽然对单调变形过程中的这种转变进行了广泛的研究,但对疲劳行为的研究却极为有限。在此,我们利用分子动力学模拟研究了在应变控制的对称拉伸-压缩循环下 HEA 的相变和位错演变。我们的结果表明,循环变形行为对应变振幅很敏感,显示出三种不同的循环反应。值得注意的是,在 4.8% 的高应变振幅下出现了渐进的 FCC-BCC 相变过程。在循环加载条件下,晶界及其三重交界处被确定为相变的首选位置。这些发现为理解具有转化诱导塑性的 HEA 的疲劳变形提供了宝贵的原子尺度见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Fabrication of VOOH hollow spheres for ammonium-ion supercapacitors Realizing preparation of zinc anode through regulating electrodeposition current density for aqueous zinc-ion batteries Carbon-coated MoS2/Mxene hybrids for enhanced Li-ions storage performance Behavior of high-velocity oxygen fuel sprayed chromium-coating on Zircaloy-4 fuel cladding under loss-of-coolant accident conditions Cryogenic fracture toughness of high manganese steel joint and 7 %Ni steel joint welded with nickel-based filler metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1