Tuning ZnSe nanostructures for enhanced ammonia sensing at room temperature

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-06-25 DOI:10.1016/j.matlet.2024.136919
Ruchika Thayil, Saidi Reddy Parne
{"title":"Tuning ZnSe nanostructures for enhanced ammonia sensing at room temperature","authors":"Ruchika Thayil,&nbsp;Saidi Reddy Parne","doi":"10.1016/j.matlet.2024.136919","DOIUrl":null,"url":null,"abstract":"<div><p>Nanostructured materials, defined by their distinctive physicochemical properties at the nanometer scale, facilitate the innovation of sophisticated applications through their inherent size-dependent phenomena and surface characteristics. In this study, we explore the synthesis of ZnSe nanostructures with distinct spherical and flower-like morphologies by varying the concentration of Ethylenediamine tetraacetic acid (EDTA). Our findings reveal that higher concentrations of EDTA facilitate flower-like morphologies, which provide a large surface area desired for gas sensing applications. Herein, the as-synthesized ZnSe nanostructures were applied for ammonia (NH<sub>3</sub>) sensing at room temperature at different concentrations to evaluate their performance. The results obtained indicate that ZnSe nanostructures with flower-like morphology exhibit superior sensing capabilities, demonstrating a good response (ΔR/R<sub>air</sub>)% of 71 % compared to the 61 % response observed for spherical ZnSe nanostructures for 20 ppm NH<sub>3</sub> gas, measured at room temperature. Additionally, the flower-like ZnSe nanostructures show significantly enhanced response and recovery times, demonstrating their potential as efficient materials for NH<sub>3</sub> detection at room temperature.</p></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24010589","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured materials, defined by their distinctive physicochemical properties at the nanometer scale, facilitate the innovation of sophisticated applications through their inherent size-dependent phenomena and surface characteristics. In this study, we explore the synthesis of ZnSe nanostructures with distinct spherical and flower-like morphologies by varying the concentration of Ethylenediamine tetraacetic acid (EDTA). Our findings reveal that higher concentrations of EDTA facilitate flower-like morphologies, which provide a large surface area desired for gas sensing applications. Herein, the as-synthesized ZnSe nanostructures were applied for ammonia (NH3) sensing at room temperature at different concentrations to evaluate their performance. The results obtained indicate that ZnSe nanostructures with flower-like morphology exhibit superior sensing capabilities, demonstrating a good response (ΔR/Rair)% of 71 % compared to the 61 % response observed for spherical ZnSe nanostructures for 20 ppm NH3 gas, measured at room temperature. Additionally, the flower-like ZnSe nanostructures show significantly enhanced response and recovery times, demonstrating their potential as efficient materials for NH3 detection at room temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调谐 ZnSe 纳米结构以增强室温下的氨传感能力
纳米结构材料由其在纳米尺度上的独特物理化学特性所定义,通过其固有的尺寸依赖现象和表面特征,促进了复杂应用的创新。在本研究中,我们探讨了通过改变乙二胺四乙酸(EDTA)的浓度合成具有独特球形和花状形态的 ZnSe 纳米结构。我们的研究结果表明,较高浓度的乙二胺四乙酸有助于形成花状形态,从而提供气体传感应用所需的大表面积。在此,我们将合成的 ZnSe 纳米结构用于室温下不同浓度的氨(NH3)传感,以评估其性能。结果表明,具有花朵状形态的硒化锌纳米结构具有卓越的传感能力,在室温下测量 20 ppm NH3 气体时,与球形硒化锌纳米结构的 61% 响应相比,其良好响应 (ΔR/Rair)%达到 71%。此外,花状 ZnSe 纳米结构的响应时间和恢复时间也显著延长,这表明它们有望成为室温下检测 NH3 的高效材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Microstructural characterization and thermal stability of AlCrFeNiTi + Y2O3 high-entropy alloy nanocomposites prepared by mechanical alloying Study of nickel doping induced optical band gap modulation in ZnO nanorods Effect of cold metal transfer process on hardfacing of Inconel 718 over stainless steel 304 Modified polymethyl methacrylate as a sustainable medium for capturing carbon dioxide Discharge performance and thermal distribution optimization of thermally activated battery in high-temperature environment by phase change materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1