Yuxin Chen , Kehong Wang , Jun Huang , Xiaopeng Li , Yunfeng Rui
{"title":"An extensive evaluation of laser tissue welding and soldering biotechnologies: Recent advancements, progress, and applications","authors":"Yuxin Chen , Kehong Wang , Jun Huang , Xiaopeng Li , Yunfeng Rui","doi":"10.1016/j.crbiot.2024.100234","DOIUrl":null,"url":null,"abstract":"<div><p>In the rapidly advancing field of modern medicine, despite the availability of sophisticated techniques, suturing remains a fundamental procedure in both surgical and internal medicine operations. However, this traditional method inevitably gives rise to issues such as inflammation, fibrosis, or secondary damage. Laser tissue welding and soldering technologies offer a non-contact approach to surgical suturing with advantages including simplicity of operation, reduced fibrosis tendency, and ensured wound closure strength. Nevertheless, its applications have been attempts at clinical trials but no actual implementation. The development and implementation of this technique have the potential to revolutionize both internal and external surgery by enabling automated suture placement. This holds significant importance for ensuring suture quality and postoperative performance. This article provides a detailed summary and discussion on the current applications of this biotechnologies in various organ systems within the human body, as well as an exploration into the interaction mechanisms between tissues and lasers. Additionally, it presents a comprehensive analysis and discussion on laser types suitable for bio tissue laser soldering. Prospects for addressing tissue fibrosis resulting from laser contactless suturing are also explored. These insights will serve as valuable references and guidance for future advancements in utilizing lasers as viable alternatives in human surgical suturing.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000601/pdfft?md5=53b938ac0a82295083cb0c2ef88932ee&pid=1-s2.0-S2590262824000601-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the rapidly advancing field of modern medicine, despite the availability of sophisticated techniques, suturing remains a fundamental procedure in both surgical and internal medicine operations. However, this traditional method inevitably gives rise to issues such as inflammation, fibrosis, or secondary damage. Laser tissue welding and soldering technologies offer a non-contact approach to surgical suturing with advantages including simplicity of operation, reduced fibrosis tendency, and ensured wound closure strength. Nevertheless, its applications have been attempts at clinical trials but no actual implementation. The development and implementation of this technique have the potential to revolutionize both internal and external surgery by enabling automated suture placement. This holds significant importance for ensuring suture quality and postoperative performance. This article provides a detailed summary and discussion on the current applications of this biotechnologies in various organ systems within the human body, as well as an exploration into the interaction mechanisms between tissues and lasers. Additionally, it presents a comprehensive analysis and discussion on laser types suitable for bio tissue laser soldering. Prospects for addressing tissue fibrosis resulting from laser contactless suturing are also explored. These insights will serve as valuable references and guidance for future advancements in utilizing lasers as viable alternatives in human surgical suturing.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.