{"title":"A further study on the Ness-Helleseth function","authors":"Cheng Lyu, Xiaoqiang Wang, Dabin Zheng","doi":"10.1016/j.ffa.2024.102453","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> be a finite field with <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> elements. Ness and Helleseth in <span>[29]</span> first studied a class of functions over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> with the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, which is called the Ness-Helleseth function. The <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span> in <span>[29]</span> and by Zeng et al. for any odd prime <em>p</em> in <span>[43]</span> under the condition <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we continue to study the Ness-Helleseth functions under the condition that <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Firstly, we prove that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a permutation polynomial with differential uniformity not more than 4 if <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></math></span>. Moreover, for some more special <em>u</em>, <em>f</em> is an involution with differential uniformity at most 3. Secondly, we show that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a locally-APN function for <span><math><mi>u</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>. In addition, the differential spectrum and boomerang spectrum of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are obtained via judging the number of solutions of some special equations. We obtain the first non-PN function that its boomerang uniformity can attain 0 or 1.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"98 ","pages":"Article 102453"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000923","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite field with elements. Ness and Helleseth in [29] first studied a class of functions over with the form , which is called the Ness-Helleseth function. The has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for in [29] and by Zeng et al. for any odd prime p in [43] under the condition and . In this paper, we continue to study the Ness-Helleseth functions under the condition that and . Firstly, we prove that is a permutation polynomial with differential uniformity not more than 4 if . Moreover, for some more special u, f is an involution with differential uniformity at most 3. Secondly, we show that is a locally-APN function for . In addition, the differential spectrum and boomerang spectrum of are obtained via judging the number of solutions of some special equations. We obtain the first non-PN function that its boomerang uniformity can attain 0 or 1.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.