Pub Date : 2026-01-16DOI: 10.1016/j.ffa.2026.102794
Gábor Korchmáros , Federico Romaniello , Valentino Smaldore
Algebraic geometry codes on the Hermitian curve have been the subject of several papers, since they happen to have good performances and large automorphism groups. Here, those arising from the Singer cycle of the Hermitian curve are investigated.
{"title":"Hermitian-Singer functional and differential codes","authors":"Gábor Korchmáros , Federico Romaniello , Valentino Smaldore","doi":"10.1016/j.ffa.2026.102794","DOIUrl":"10.1016/j.ffa.2026.102794","url":null,"abstract":"<div><div>Algebraic geometry codes on the Hermitian curve have been the subject of several papers, since they happen to have good performances and large automorphism groups. Here, those arising from the Singer cycle of the Hermitian curve are investigated.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102794"},"PeriodicalIF":1.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145981221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-15DOI: 10.1016/j.ffa.2026.102790
Ming Hsuan Kang, Yu Hsuan Hsieh
We present an algebraic construction of trace-based De Bruijn tori over finite fields, focusing on the nonzero variant that omits the all-zero pattern. The construction arranges nonzero field elements on a toroidal grid using two multiplicatively independent generators, with values obtained by applying a fixed linear map, typically the field trace.
We characterize sampling patterns as subsets whose associated field elements form an -basis, and show that column structures correspond to cyclic shifts of De Bruijn sequences determined by irreducible polynomials over subfields. Recursive update rules based on multiplicative translations enable efficient computation.
{"title":"De Bruijn tori without zeros: a field-theoretic perspective","authors":"Ming Hsuan Kang, Yu Hsuan Hsieh","doi":"10.1016/j.ffa.2026.102790","DOIUrl":"10.1016/j.ffa.2026.102790","url":null,"abstract":"<div><div>We present an algebraic construction of trace-based De Bruijn tori over finite fields, focusing on the nonzero variant that omits the all-zero pattern. The construction arranges nonzero field elements on a toroidal grid using two multiplicatively independent generators, with values obtained by applying a fixed linear map, typically the field trace.</div><div>We characterize sampling patterns as subsets whose associated field elements form an <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-basis, and show that column structures correspond to cyclic shifts of De Bruijn sequences determined by irreducible polynomials over subfields. Recursive update rules based on multiplicative translations enable efficient computation.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102790"},"PeriodicalIF":1.2,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145981218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-15DOI: 10.1016/j.ffa.2026.102799
Clementa Alonso-González, Miguel Ángel Navarro-Pérez
A flag is a sequence of nested subspaces of a given ambient space over a finite field . In network coding, a flag code is a set of flags, all of them with the same sequence of dimensions, the type vector. In this paper, we investigate quasi-optimum distance flag codes, i.e., those attaining the second best possible distance value. We characterize them and present upper bounds for their cardinality. Moreover, we propose a systematic construction for every choice of the type vector by using partial spreads and sunflowers. For flag codes with lower minimum distance, we adapt the previous construction and provide some results towards their characterization, especially in the case of the third best possible distance value.
{"title":"Quasi-optimum distance flag codes","authors":"Clementa Alonso-González, Miguel Ángel Navarro-Pérez","doi":"10.1016/j.ffa.2026.102799","DOIUrl":"10.1016/j.ffa.2026.102799","url":null,"abstract":"<div><div>A <em>flag</em> is a sequence of nested subspaces of a given ambient space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> over a finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. In network coding, a <em>flag code</em> is a set of flags, all of them with the same sequence of dimensions, the <em>type vector</em>. In this paper, we investigate <em>quasi-optimum distance flag codes</em>, i.e., those attaining the second best possible distance value. We characterize them and present upper bounds for their cardinality. Moreover, we propose a systematic construction for every choice of the type vector by using <em>partial spreads</em> and <em>sunflowers</em>. For flag codes with lower minimum distance, we adapt the previous construction and provide some results towards their characterization, especially in the case of the third best possible distance value.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102799"},"PeriodicalIF":1.2,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145981220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-14DOI: 10.1016/j.ffa.2026.102797
Rohit Gupta , Amritanshu Rai
Let q be a power of a prime number and let be the finite field with q elements. Let be arbitrary. In this paper, we give a relationship between the permutation property of polynomials over of the forms and where , . Further, we find the necessary and sufficient conditions on the coefficients c and d such that polynomials of the forms and permute . Moreover, some results of this article supersede certain results in the related literature.
{"title":"Permutation polynomials of the form (xq−x+δ)i(q−1)+1+L(x) over Fq2","authors":"Rohit Gupta , Amritanshu Rai","doi":"10.1016/j.ffa.2026.102797","DOIUrl":"10.1016/j.ffa.2026.102797","url":null,"abstract":"<div><div>Let <em>q</em> be a power of a prime number and let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be the finite field with <em>q</em> elements. Let <span><math><mi>δ</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> be arbitrary. In this paper, we give a relationship between the permutation property of polynomials over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span> of the forms <span><math><mi>g</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><mi>x</mi><mo>+</mo><mi>δ</mi><mo>)</mo><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>g</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>d</mi><mi>x</mi></math></span> where <span><math><mi>c</mi><mo>,</mo><mi>d</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. Further, we find the necessary and sufficient conditions on the coefficients <em>c</em> and <em>d</em> such that polynomials of the forms <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><mi>x</mi><mo>+</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mi>i</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>c</mi><mi>x</mi></math></span> and <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>−</mo><mi>x</mi><mo>+</mo><mi>δ</mi><mo>)</mo></mrow><mrow><mi>i</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><mi>d</mi><mi>x</mi></math></span> permute <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub></math></span>. Moreover, some results of this article supersede certain results in the related literature.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102797"},"PeriodicalIF":1.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145981222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1016/j.ffa.2026.102791
Huiying Liu, Hongwei Liu
Function-correcting codes are designed to reduce redundancy of codes when protecting function values of information against errors. As generalizations of Hamming weights and Lee weights over , homogeneous weights are used in codes over finite rings. In this paper, we introduce function-correcting codes with homogeneous distance denoted by FCCHDs, which extend function-correcting codes with Hamming distance. We first define D-homogeneous distance codes. We use D-homogeneous distance codes to characterize connections between the optimal redundancy of FCCHDs and lengths of these codes for some matrices D. By these connections, we obtain several bounds of the optimal redundancy of FCCHDs for some functions. In addition, we also construct FCCHDs for homogeneous weight functions and homogeneous weight distribution functions. Specially, redundancies of some codes we construct in this paper reach the optimal redundancy bounds.
{"title":"Function-correcting codes with homogeneous distance","authors":"Huiying Liu, Hongwei Liu","doi":"10.1016/j.ffa.2026.102791","DOIUrl":"10.1016/j.ffa.2026.102791","url":null,"abstract":"<div><div>Function-correcting codes are designed to reduce redundancy of codes when protecting function values of information against errors. As generalizations of Hamming weights and Lee weights over <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, homogeneous weights are used in codes over finite rings. In this paper, we introduce function-correcting codes with homogeneous distance denoted by FCCHDs, which extend function-correcting codes with Hamming distance. We first define <em>D</em>-homogeneous distance codes. We use <em>D</em>-homogeneous distance codes to characterize connections between the optimal redundancy of FCCHDs and lengths of these codes for some matrices <em>D</em>. By these connections, we obtain several bounds of the optimal redundancy of FCCHDs for some functions. In addition, we also construct FCCHDs for homogeneous weight functions and homogeneous weight distribution functions. Specially, redundancies of some codes we construct in this paper reach the optimal redundancy bounds.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102791"},"PeriodicalIF":1.2,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1016/j.ffa.2026.102792
André Duarte
Let be a finite field and is the dihedral group of order 2n. We present formulas for a complete set of 2-cocycles of over and compute the primitive central idempotents of . We conclude by describing the Wedderburn decomposition of and the irreducible projective representations of over .
{"title":"Twisted group algebra of dihedral groups over finite fields","authors":"André Duarte","doi":"10.1016/j.ffa.2026.102792","DOIUrl":"10.1016/j.ffa.2026.102792","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> be a finite field and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the dihedral group of order 2<em>n</em>. We present formulas for a complete set of 2-cocycles of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and compute the primitive central idempotents of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. We conclude by describing the Wedderburn decomposition of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>α</mi></mrow></msubsup><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the irreducible projective representations of <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102792"},"PeriodicalIF":1.2,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-13DOI: 10.1016/j.ffa.2025.102789
Lavanya G, Anuradha Sharma
<div><div>Let <em>q</em> be a prime power, and let <em>m</em>, <em>v</em>, <em>t</em> be integers satisfying <span><math><mn>2</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi>v</mi><mo>≤</mo><mi>m</mi></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>t</mi></mrow></msup><mo>></mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>v</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></math></span>, where <span><math><mo>(</mo><mtable><mtr><mtd><mo>⋅</mo></mtd></mtr><mtr><mtd><mo>⋅</mo></mtd></mtr></mtable><mo>)</mo></math></span> denotes the binomial coefficient. Let <em>X</em> be a subset of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>}</mo></math></span> with <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><mi>v</mi></math></span>. In this paper, we consider the set <span><math><mi>Δ</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>:</mo><mtext>supp</mtext><mo>(</mo><mi>u</mi><mo>)</mo><mo>⊆</mo><mi>X</mi><mtext> and </mtext><mi>w</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>t</mi><mo>}</mo></math></span>, where <span><math><mtext>supp</mtext><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> denotes the support of a vector and <span><math><mi>w</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> denotes the Hamming weight function. We first observe that the set Δ is a simplicial complex of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> with support <span><math><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>}</mo></math></span> consisting of all distinct subsets of <em>X</em> with cardinality <em>t</em>. Note that <span><math><mi>b</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>v</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∖</mo><mo>(</mo><munder><mo>⋃</mo><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>(</mo><mo>≠</mo><mi>i</mi><mo>)</mo><mo>≤</mo><mi>b</mi></mrow></munder><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>b</mi></math></span>, and the pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span> forms a trivial Steiner system. In this paper, we study linear codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with defining sets <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</
{"title":"Construction of several infinite families of linear codes with new parameters: Hamming weight enumerators and hull dimensions","authors":"Lavanya G, Anuradha Sharma","doi":"10.1016/j.ffa.2025.102789","DOIUrl":"10.1016/j.ffa.2025.102789","url":null,"abstract":"<div><div>Let <em>q</em> be a prime power, and let <em>m</em>, <em>v</em>, <em>t</em> be integers satisfying <span><math><mn>2</mn><mo>≤</mo><mi>t</mi><mo><</mo><mi>v</mi><mo>≤</mo><mi>m</mi></math></span> and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>−</mo><mi>t</mi></mrow></msup><mo>></mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>v</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></math></span>, where <span><math><mo>(</mo><mtable><mtr><mtd><mo>⋅</mo></mtd></mtr><mtr><mtd><mo>⋅</mo></mtd></mtr></mtable><mo>)</mo></math></span> denotes the binomial coefficient. Let <em>X</em> be a subset of <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>}</mo></math></span> with <span><math><mo>|</mo><mi>X</mi><mo>|</mo><mo>=</mo><mi>v</mi></math></span>. In this paper, we consider the set <span><math><mi>Δ</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup><mo>:</mo><mtext>supp</mtext><mo>(</mo><mi>u</mi><mo>)</mo><mo>⊆</mo><mi>X</mi><mtext> and </mtext><mi>w</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>≤</mo><mi>t</mi><mo>}</mo></math></span>, where <span><math><mtext>supp</mtext><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> denotes the support of a vector and <span><math><mi>w</mi><mo>(</mo><mo>⋅</mo><mo>)</mo></math></span> denotes the Hamming weight function. We first observe that the set Δ is a simplicial complex of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span> with support <span><math><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>}</mo></math></span> consisting of all distinct subsets of <em>X</em> with cardinality <em>t</em>. Note that <span><math><mi>b</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>v</mi></mtd></mtr><mtr><mtd><mi>t</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>≥</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∖</mo><mo>(</mo><munder><mo>⋃</mo><mrow><mn>1</mn><mo>≤</mo><mi>j</mi><mo>(</mo><mo>≠</mo><mi>i</mi><mo>)</mo><mo>≤</mo><mi>b</mi></mrow></munder><msub><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo><mo>=</mo><mo>∅</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>b</mi></math></span>, and the pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>A</mi><mo>)</mo></math></span> forms a trivial Steiner system. In this paper, we study linear codes over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> with defining sets <span><math><msup><mrow><mi>Δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>=</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"112 ","pages":"Article 102789"},"PeriodicalIF":1.2,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145981219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-02DOI: 10.1016/j.ffa.2025.102787
Wei Tang , Yue Zhou
Let denote the set of symmetric bilinear forms over an n-dimensional -vector space. A subset of is called a d-code if the rank of is larger than or equal to d for any distinct A and B in . If is further closed under matrix addition, then is sharply upper bounded by if is even and if is odd. Additive codes meeting these upper bounds are called maximum. There are very few known constructions of them. In this paper, we obtain a new family of maximum -linear -codes in for and 10 which are not equivalent to any known constructions. Furthermore, we completely determine the equivalence between distinct members in this new family.
{"title":"A new family of maximum linear symmetric rank-distance codes","authors":"Wei Tang , Yue Zhou","doi":"10.1016/j.ffa.2025.102787","DOIUrl":"10.1016/j.ffa.2025.102787","url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> denote the set of symmetric bilinear forms over an <em>n</em>-dimensional <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-vector space. A subset <span><math><mi>C</mi></math></span> of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> is called a <em>d</em>-code if the rank of <span><math><mi>A</mi><mo>−</mo><mi>B</mi></math></span> is larger than or equal to <em>d</em> for any distinct <em>A</em> and <em>B</em> in <span><math><mi>C</mi></math></span>. If <span><math><mi>C</mi></math></span> is further closed under matrix addition, then <span><math><mo>|</mo><mi>C</mi><mo>|</mo></math></span> is sharply upper bounded by <span><math><msup><mrow><mi>q</mi></mrow><mrow><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup></math></span> if <span><math><mi>n</mi><mo>−</mo><mi>d</mi></math></span> is even and <span><math><msup><mrow><mi>q</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>d</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup></math></span> if <span><math><mi>n</mi><mo>−</mo><mi>d</mi></math></span> is odd. Additive codes meeting these upper bounds are called maximum. There are very few known constructions of them. In this paper, we obtain a new family of maximum <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-linear <span><math><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></math></span>-codes in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>=</mo><mn>6</mn><mo>,</mo><mn>8</mn></math></span> and 10 which are not equivalent to any known constructions. Furthermore, we completely determine the equivalence between distinct members in this new family.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"111 ","pages":"Article 102787"},"PeriodicalIF":1.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-30DOI: 10.1016/j.ffa.2025.102788
Usman Mushrraf, Ferdinando Zullo
One-weight codes, in which all nonzero codewords share the same weight, form a highly structured class of linear codes with deep connections to finite geometry. While their classification is well understood in the Hamming and rank metrics—being equivalent to (direct sums of) simplex codes—the sum-rank metric presents a far more intricate landscape. In this work, we explore the geometry of one-weight sum-rank metric codes, focusing on three distinct classes. First, we introduce and classify constant rank-list sum-rank metric codes, where each nonzero codeword has the same tuple of ranks, extending results from the rank-metric setting. Next, we investigate the more general constant rank-profile codes, where, up to reordering, each nonzero codeword has the same tuple of ranks. Although a complete classification remains elusive, we present the first examples and partial structural results for this class. Finally, we consider one-weight codes that are also MSRD (Maximum Sum-Rank Distance) codes. For dimension two, constructions arise from partitions of scattered linear sets on projective lines. For dimension three, we connect their existence to that of special 2-fold blocking sets in the projective plane, leading to new bounds and nonexistence results over certain fields.
{"title":"One-weight codes in the sum-rank metric","authors":"Usman Mushrraf, Ferdinando Zullo","doi":"10.1016/j.ffa.2025.102788","DOIUrl":"10.1016/j.ffa.2025.102788","url":null,"abstract":"<div><div>One-weight codes, in which all nonzero codewords share the same weight, form a highly structured class of linear codes with deep connections to finite geometry. While their classification is well understood in the Hamming and rank metrics—being equivalent to (direct sums of) simplex codes—the sum-rank metric presents a far more intricate landscape. In this work, we explore the geometry of one-weight sum-rank metric codes, focusing on three distinct classes. First, we introduce and classify <em>constant rank-list</em> sum-rank metric codes, where each nonzero codeword has the same tuple of ranks, extending results from the rank-metric setting. Next, we investigate the more general <em>constant rank-profile</em> codes, where, up to reordering, each nonzero codeword has the same tuple of ranks. Although a complete classification remains elusive, we present the first examples and partial structural results for this class. Finally, we consider one-weight codes that are also MSRD (Maximum Sum-Rank Distance) codes. For dimension two, constructions arise from partitions of scattered linear sets on projective lines. For dimension three, we connect their existence to that of special 2-fold blocking sets in the projective plane, leading to new bounds and nonexistence results over certain fields.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"111 ","pages":"Article 102788"},"PeriodicalIF":1.2,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-30DOI: 10.1016/j.ffa.2025.102786
Xiaoran Wang, Junling Zhou
This paper concentrates on constructing infinite families of non-simple subspace 2-designs and 3-designs with block dimension 4. We investigate in detail the structure of the -incidence matrix between 2-subspaces and 4-subspaces of with . Employing the incidence matrix, we establish two recursive constructions for 2- designs, which are based on a 2- design and a 2- design, respectively. Several new infinite classes of simple q-analogs of group divisible designs (q-GDDs) with block dimension 4 are also produced. Making use of the recursive constructions and new q-GDDs, plenty of new infinite series of non-simple subspace 2-designs with block dimension 4 are constructed. We also study the -incidence matrix between 3-subspaces and 4-subspaces. From this, a recursive construction and a new infinite family of non-simple 3- designs are produced as well.
{"title":"Infinite families of non-simple subspace 2- and 3-designs with block dimension 4","authors":"Xiaoran Wang, Junling Zhou","doi":"10.1016/j.ffa.2025.102786","DOIUrl":"10.1016/j.ffa.2025.102786","url":null,"abstract":"<div><div>This paper concentrates on constructing infinite families of non-simple subspace 2-designs and 3-designs with block dimension 4. We investigate in detail the structure of the <span><math><mrow><mi>GL</mi></mrow><mo>(</mo><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></math></span>-incidence matrix between 2-subspaces and 4-subspaces of <span><math><mi>GF</mi><mspace></mspace><msup><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow><mrow><mi>m</mi><mi>l</mi></mrow></msup></math></span> with <span><math><mi>m</mi><mo>,</mo><mi>l</mi><mo>≥</mo><mn>3</mn></math></span>. Employing the incidence matrix, we establish two recursive constructions for 2-<span><math><msub><mrow><mo>(</mo><mi>m</mi><mi>l</mi><mo>,</mo><mn>4</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> designs, which are based on a 2-<span><math><msub><mrow><mo>(</mo><mi>l</mi><mo>,</mo><mn>4</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> design and a 2-<span><math><msub><mrow><mo>(</mo><mi>l</mi><mo>,</mo><mn>3</mn><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> design, respectively. Several new infinite classes of simple <em>q</em>-analogs of group divisible designs (<em>q</em>-GDDs) with block dimension 4 are also produced. Making use of the recursive constructions and new <em>q</em>-GDDs, plenty of new infinite series of non-simple subspace 2-designs with block dimension 4 are constructed. We also study the <span><math><mi>GL</mi><mo>(</mo><mi>m</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>)</mo></math></span>-incidence matrix between 3-subspaces and 4-subspaces. From this, a recursive construction and a new infinite family of non-simple 3-<span><math><msub><mrow><mo>(</mo><mi>m</mi><mi>l</mi><mo>,</mo><mn>4</mn><mo>,</mo><mi>λ</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> designs are produced as well.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"111 ","pages":"Article 102786"},"PeriodicalIF":1.2,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145883539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}