Study on the composition-property relationships of basalt fibers based on symbolic regression and physics-informed neural network

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-06-24 DOI:10.1016/j.compositesa.2024.108324
Xiaomeng Wang , Qianhua Kan , Michal Petru , Guozheng Kang
{"title":"Study on the composition-property relationships of basalt fibers based on symbolic regression and physics-informed neural network","authors":"Xiaomeng Wang ,&nbsp;Qianhua Kan ,&nbsp;Michal Petru ,&nbsp;Guozheng Kang","doi":"10.1016/j.compositesa.2024.108324","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the known influence of chemical composition on the mechanical properties of basalt fibers, a clear understanding of this relationship is lacking. Chemical composition analysis and mechanical property tests are performed on basalt fiber samples. Test data is collected from various countries and regions to expand the dataset. An improved Physics-Informed Neural Network (PINN) approach is specifically designed to address the complexities of this relationship. By incorporating physical models like the Makishima-Mackenzie model, Rocherulle model and a symbolic regression formula, the PINN leverages established physical principles to enhance its ability to understand the underlying mechanisms governing the influence of chemical composition on mechanical properties. This focus on physical mechanisms not only improves the interpretability of the model but also empowers it to make accurate predictions, as evidenced by the high squared correlation coefficients of 0.8767 and 0.8145 between predicted and experimental values of modulus and strength, respectively.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X2400321X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the known influence of chemical composition on the mechanical properties of basalt fibers, a clear understanding of this relationship is lacking. Chemical composition analysis and mechanical property tests are performed on basalt fiber samples. Test data is collected from various countries and regions to expand the dataset. An improved Physics-Informed Neural Network (PINN) approach is specifically designed to address the complexities of this relationship. By incorporating physical models like the Makishima-Mackenzie model, Rocherulle model and a symbolic regression formula, the PINN leverages established physical principles to enhance its ability to understand the underlying mechanisms governing the influence of chemical composition on mechanical properties. This focus on physical mechanisms not only improves the interpretability of the model but also empowers it to make accurate predictions, as evidenced by the high squared correlation coefficients of 0.8767 and 0.8145 between predicted and experimental values of modulus and strength, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于符号回归和物理信息神经网络的玄武岩纤维成分-属性关系研究
尽管化学成分对玄武岩纤维机械性能的影响众所周知,但对这种关系却缺乏清晰的认识。我们对玄武岩纤维样品进行了化学成分分析和机械性能测试。测试数据收集自不同国家和地区,以扩大数据集。改进的物理信息神经网络(PINN)方法专门用于解决这种关系的复杂性。通过结合牧岛-麦肯齐模型、罗舍鲁尔模型和符号回归公式等物理模型,PINN 利用既定的物理原理,提高了理解化学成分对机械性能影响的内在机制的能力。这种对物理机制的关注不仅提高了模型的可解释性,还使其能够做出准确的预测,模量和强度的预测值与实验值之间分别高达 0.8767 和 0.8145 的平方相关系数就是证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
Strontium-Modified porous attapulgite composite hydrogel scaffold with advanced angiogenic and osteogenic potential for bone defect repair Interlaminar properties of carbon fibre/epoxy laminates produced through a semi-curing process The use of digital thread for reconstruction of local fiber orientation in a compression molded pin bracket via deep learning Manufacturing thick laminates using a layer by layer curing approach In-situ residual strength prediction of composites subjected to fatigue loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1