Joshua A. Rich , Yu Fan , Qingrong Chen , Daoud Meerzaman , William G. Stetler-Stevenson , David Peeney
{"title":"Analysis of cancer cell line and tissue RNA sequencing data reveals an essential and dark matrisome","authors":"Joshua A. Rich , Yu Fan , Qingrong Chen , Daoud Meerzaman , William G. Stetler-Stevenson , David Peeney","doi":"10.1016/j.mbplus.2024.100156","DOIUrl":null,"url":null,"abstract":"<div><p>Extracellular matrix remodeling is a hallmark of tissue development, homeostasis, and disease. The processes that mediate remodeling, and the consequences of such, are the topic of extensive focus in biomedical research. Cell culture methods represent a crucial tool utilized by those interested in matrisome function, the easiest of which are implemented with immortalized/cancer cell lines. These cell lines often form the foundations of a research proposal, or serve as vehicles of validation for other model systems. For these reasons, it is important to understand the complement of matrisome genes that are expressed when identifying appropriate cell culture models for hypothesis testing. To this end, we harvested bulk RNA sequencing data from the Cancer Cell Line Encyclopedia (CCLE) to assess matrisome gene expression in 1019 human cell lines. Our examination reveals that a large proportion of the matrisome is poorly represented in human cancer cell lines, with approximately 10% not expressed above threshold in any of the cell lines assayed. Conversely, we identify clusters of essential/common matrisome genes that are abundantly expressed in cell lines. To validate these observations against tissue data, we compared our findings with bulk RNA sequencing data from the Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) program. This comparison demonstrates general agreement between the “essential/common” and “dark/uncommon” matrisome across the three datasets, albeit with discordance observed in 59 matrisome genes between cell lines and tissues. Notably, all of the discordant genes are essential/common in tissues yet minimally expressed in cell lines, underscoring critical considerations for matrix biology researchers employing immortalized cell lines for their investigations.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"23 ","pages":"Article 100156"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590028524000164/pdfft?md5=243092e6a458f09effb7c337f5b72353&pid=1-s2.0-S2590028524000164-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590028524000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular matrix remodeling is a hallmark of tissue development, homeostasis, and disease. The processes that mediate remodeling, and the consequences of such, are the topic of extensive focus in biomedical research. Cell culture methods represent a crucial tool utilized by those interested in matrisome function, the easiest of which are implemented with immortalized/cancer cell lines. These cell lines often form the foundations of a research proposal, or serve as vehicles of validation for other model systems. For these reasons, it is important to understand the complement of matrisome genes that are expressed when identifying appropriate cell culture models for hypothesis testing. To this end, we harvested bulk RNA sequencing data from the Cancer Cell Line Encyclopedia (CCLE) to assess matrisome gene expression in 1019 human cell lines. Our examination reveals that a large proportion of the matrisome is poorly represented in human cancer cell lines, with approximately 10% not expressed above threshold in any of the cell lines assayed. Conversely, we identify clusters of essential/common matrisome genes that are abundantly expressed in cell lines. To validate these observations against tissue data, we compared our findings with bulk RNA sequencing data from the Genotype-Tissue Expression (GTEx) portal and The Cancer Genome Atlas (TCGA) program. This comparison demonstrates general agreement between the “essential/common” and “dark/uncommon” matrisome across the three datasets, albeit with discordance observed in 59 matrisome genes between cell lines and tissues. Notably, all of the discordant genes are essential/common in tissues yet minimally expressed in cell lines, underscoring critical considerations for matrix biology researchers employing immortalized cell lines for their investigations.