Ultrasensitive refractive index and temperature sensor based on D-shaped photonic crystal fiber by group birefringence response in a Sagnac interferometer
Zefeng Li , Jinhui Yuan , Lan Rao , Binbin Yan , Kuiru Wang , Xinzhu Sang , Qiang Wu , Chongxiu Yu
{"title":"Ultrasensitive refractive index and temperature sensor based on D-shaped photonic crystal fiber by group birefringence response in a Sagnac interferometer","authors":"Zefeng Li , Jinhui Yuan , Lan Rao , Binbin Yan , Kuiru Wang , Xinzhu Sang , Qiang Wu , Chongxiu Yu","doi":"10.1016/j.photonics.2024.101291","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a D-shaped photonic crystal fiber (PCF) sensor based on a Sagnac interferometer is proposed, and it can achieve ultrahigh refractive index (RI) and temperature sensitivity when operating around the turning point of group birefringence (<em>B</em><sub>g</sub>). We undertake a theoretical analysis on <em>B</em><sub>g</sub> and a simulation calculation to study the sensing characteristics and obtain the optimized structure parameters of the D-shaped PCF sensor. The simulation results show that the maximum average RI sensitivities can reach 3253.33 and 15500 nm/RIU in the RI range of 1.33 to 1.35 and 1.40 to 1.42, respectively. When the temperature changes from -50 to 0 °C and 0 to 50 °C, the maximum average temperature sensitivities are up to 10.11 and 10.67 nm/°C, respectively. The proposed D-shaped PCF sensor can achieve dual-parameter sensing and has great potential for practical applications in biochemical and environmental science.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"61 ","pages":"Article 101291"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102400066X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a D-shaped photonic crystal fiber (PCF) sensor based on a Sagnac interferometer is proposed, and it can achieve ultrahigh refractive index (RI) and temperature sensitivity when operating around the turning point of group birefringence (Bg). We undertake a theoretical analysis on Bg and a simulation calculation to study the sensing characteristics and obtain the optimized structure parameters of the D-shaped PCF sensor. The simulation results show that the maximum average RI sensitivities can reach 3253.33 and 15500 nm/RIU in the RI range of 1.33 to 1.35 and 1.40 to 1.42, respectively. When the temperature changes from -50 to 0 °C and 0 to 50 °C, the maximum average temperature sensitivities are up to 10.11 and 10.67 nm/°C, respectively. The proposed D-shaped PCF sensor can achieve dual-parameter sensing and has great potential for practical applications in biochemical and environmental science.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.