Exploring synthesis, characterization, and computational insights into indacenodithiophene-based hole transporting materials for enhanced perovskite solar cell applications

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-06-28 DOI:10.1016/j.solener.2024.112732
Afzal Siddiqui , Suman , Sheik Haseena , Kamatham Narayanaswamy , Mahesh Kumar Ravva , Surya Prakash Singh
{"title":"Exploring synthesis, characterization, and computational insights into indacenodithiophene-based hole transporting materials for enhanced perovskite solar cell applications","authors":"Afzal Siddiqui ,&nbsp;Suman ,&nbsp;Sheik Haseena ,&nbsp;Kamatham Narayanaswamy ,&nbsp;Mahesh Kumar Ravva ,&nbsp;Surya Prakash Singh","doi":"10.1016/j.solener.2024.112732","DOIUrl":null,"url":null,"abstract":"<div><p>Utilizing hole-transporting materials (HTMs) to extract and transport holes from perovskite materials to the electrode remains essential in most perovskite solar cell (PSC) architectures. Developing cost-effective and efficient HTMs is essential for advancing PSC technology. We have synthesized a novel HTM, TPA-IDT-TPA, which has an extended fused ring as the core moiety called indacenodithiophene (IDT) and p-methoxy triphenylamine (p-mTPA) as terminal groups. TPA-IDT-TPA exhibits appropriate frontier molecular orbital (FMO) energy levels that match perovskite materials. Density functional theory (DFT) simulations were performed to comprehend the electronic, excited-state, and charge transport properties. The DFT results indicate that the extended π-conjugation, rigidity, and the central core ring of the HTM enhanced the π-π stacking, contributing to efficient charge transport. The PSC constructed with TPA-IDT-TPA achieves a device efficiency of 8.34%, with high values of <em>J<sub>SC</sub></em> and <em>V<sub>OC</sub></em>, which can be further enhanced through molecular optimization.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24004274","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing hole-transporting materials (HTMs) to extract and transport holes from perovskite materials to the electrode remains essential in most perovskite solar cell (PSC) architectures. Developing cost-effective and efficient HTMs is essential for advancing PSC technology. We have synthesized a novel HTM, TPA-IDT-TPA, which has an extended fused ring as the core moiety called indacenodithiophene (IDT) and p-methoxy triphenylamine (p-mTPA) as terminal groups. TPA-IDT-TPA exhibits appropriate frontier molecular orbital (FMO) energy levels that match perovskite materials. Density functional theory (DFT) simulations were performed to comprehend the electronic, excited-state, and charge transport properties. The DFT results indicate that the extended π-conjugation, rigidity, and the central core ring of the HTM enhanced the π-π stacking, contributing to efficient charge transport. The PSC constructed with TPA-IDT-TPA achieves a device efficiency of 8.34%, with high values of JSC and VOC, which can be further enhanced through molecular optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索基于茚并二噻吩的空穴传输材料的合成、表征和计算方法,以提高过氧化物太阳能电池的应用水平
利用空穴传输材料(HTMs)从包晶石材料中提取空穴并将其传输到电极,对于大多数包晶石太阳能电池(PSC)结构来说仍然至关重要。开发具有成本效益的高效 HTM 对于推动 PSC 技术的发展至关重要。我们合成了一种新型 HTM TPA-IDT-TPA,它的核心分子是一个扩展的融合环,称为茚并二噻吩(IDT),末端基团是对甲氧基三苯胺(p-mTPA)。TPA-IDT-TPA表现出与包晶材料相匹配的适当前沿分子轨道(FMO)能级。为了理解其电子、激发态和电荷传输特性,我们进行了密度泛函理论(DFT)模拟。DFT 结果表明,HTM 的扩展π共轭、刚性和中心核环增强了π-π堆叠,从而有助于高效的电荷传输。用 TPA-IDT-TPA 构建的 PSC 器件效率高达 8.34%,具有较高的 JSC 值和 VOC 值,可通过分子优化进一步提高器件效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Vertical distribution of the desert radiation components and the influence of dust Enhanced photovoltaic performance dye-sensitized solar cells (DSSCs) employing α-GeO2–TiO2 bilayer and heterojunction photoanodes Firmitas, Utilitas, and Venustas of photovoltaic architecture Incorporating perovskites in photovoltaic-powered electrochemical cells for a sustainable future: An inclusive review Efficiency assessment of perovskite solar cells: A focus on hole transporting layers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1