Renewable electricity powered chemical industry at anode: Opportunities, development and perspectives

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-06-22 DOI:10.1016/j.nanoen.2024.109884
Daojin Zhou , Cong Tian , Haoming Huang , Wei Zhu , Liang Luo , Xiaoming Sun
{"title":"Renewable electricity powered chemical industry at anode: Opportunities, development and perspectives","authors":"Daojin Zhou ,&nbsp;Cong Tian ,&nbsp;Haoming Huang ,&nbsp;Wei Zhu ,&nbsp;Liang Luo ,&nbsp;Xiaoming Sun","doi":"10.1016/j.nanoen.2024.109884","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical reduction reactions, including CO<sub>2</sub>/CO reduction, hydrogen evolution and N<sub>2</sub>/NO<sub>x</sub><sup>-</sup> reduction, have contributed to lower globe carbon footprint, valorize inert molecules, and convert waste to harmless products. However, the most paired anodic reaction yet remain the oxygen evolution, which is haunted by its high thermodynamic barrier and less profitable product O<sub>2</sub>. Alternative oxidation reactions with low thermodynamic barrier and economic advantages, have been coupled with various reduction reactions. In this review, recent progresses in alternative oxidation reactions have been summarized and compared, with specific emphasis on reaction selections and corresponding electrocatalysts, future challenges and research directions of renewable electricity powered chemical industry at anode.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006323","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical reduction reactions, including CO2/CO reduction, hydrogen evolution and N2/NOx- reduction, have contributed to lower globe carbon footprint, valorize inert molecules, and convert waste to harmless products. However, the most paired anodic reaction yet remain the oxygen evolution, which is haunted by its high thermodynamic barrier and less profitable product O2. Alternative oxidation reactions with low thermodynamic barrier and economic advantages, have been coupled with various reduction reactions. In this review, recent progresses in alternative oxidation reactions have been summarized and compared, with specific emphasis on reaction selections and corresponding electrocatalysts, future challenges and research directions of renewable electricity powered chemical industry at anode.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以可再生能源为动力的阳极化学工业:机遇、发展和前景
电化学还原反应(包括 CO2/CO 还原、氢进化和 N2/NOx 还原)有助于降低全球碳足迹、惰性分子的价值以及将废物转化为无害产品。然而,最常见的配对阳极反应仍然是氧进化,其热力学势垒较高,产物 O2 的利润较低。热力学势垒低且具有经济优势的替代氧化反应已与各种还原反应相结合。本综述总结并比较了替代氧化反应的最新进展,特别强调了反应选择和相应的电催化剂、阳极可再生能源发电化学工业的未来挑战和研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1