{"title":"Calorimetric and Raman spectroscopic studies of zwitterionic and anionic membrane interactions of phenolic compound coumarin","authors":"Cisem Altunayar-Unsalan","doi":"10.1016/j.vibspec.2024.103712","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that polyphenols possess potent antioxidant qualities. However, the precise antioxidant action mechanism of phenolic compounds is still not well defined. It is evident that understanding the molecular mechanisms behind polyphenol-lipid interactions is necessary to comprehend this impact. The objective of this work is to examine the effect of phenolic compound coumarin on the physicochemical properties of cell membrane models. To accomplish this goal, model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) lipids were used. These lipid species are the main component of the mammalian and gram-positive bacteria membranes, respectively. Differential scanning calorimetry (DSC) and Raman spectroscopy were applied for studying the interaction of coumarin with DMPC and DMPG. From the DSC results, it was found that pretransition was abolished for both lipid systems at 20 mol% coumarin. Main phase transition shifted to lower temperatures and broadened, but there was not a complete disappearance of main transition and coumarin was not fully miscible. A sharp peak at a higher temperature and a broad shoulder at a lower temperature of the main transition of DMPC were detected when compared to coumarin/DMPG binary system. A reduction in calorimetric enthalpy and entropy values of coumarin/DMPC system at 20 mol% was observed whereas an increase in these calorimetric parameters for coumarin/DMPG system occurred. Thus, the disorder was caused when 20 mol% coumarin interacts with DMPC lipid bilayers. The increase in enthalpy could be a result of the 20 mol% coumarin interactions with DMPG lipid bilayers or a possible generated partial interdigitation. From the Raman results, the peak height Raman intensity ratio I<sub>1090</sub>/I<sub>1130</sub> showed that coumarin induces disorder in the DMPG bilayers in the gel phase due to the increasing <em>gauche:trans</em> ratio. According to the results obtained by DSC and Raman spectroscopy, it was found that coumarin has a varied effect on membranes made from lipids with choline and glycerol head groups. Thus, it is obvious that the polyphenol/membrane interactions can be significantly impacted by the lipids’ structural variations.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"133 ","pages":"Article 103712"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124000651","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that polyphenols possess potent antioxidant qualities. However, the precise antioxidant action mechanism of phenolic compounds is still not well defined. It is evident that understanding the molecular mechanisms behind polyphenol-lipid interactions is necessary to comprehend this impact. The objective of this work is to examine the effect of phenolic compound coumarin on the physicochemical properties of cell membrane models. To accomplish this goal, model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) lipids were used. These lipid species are the main component of the mammalian and gram-positive bacteria membranes, respectively. Differential scanning calorimetry (DSC) and Raman spectroscopy were applied for studying the interaction of coumarin with DMPC and DMPG. From the DSC results, it was found that pretransition was abolished for both lipid systems at 20 mol% coumarin. Main phase transition shifted to lower temperatures and broadened, but there was not a complete disappearance of main transition and coumarin was not fully miscible. A sharp peak at a higher temperature and a broad shoulder at a lower temperature of the main transition of DMPC were detected when compared to coumarin/DMPG binary system. A reduction in calorimetric enthalpy and entropy values of coumarin/DMPC system at 20 mol% was observed whereas an increase in these calorimetric parameters for coumarin/DMPG system occurred. Thus, the disorder was caused when 20 mol% coumarin interacts with DMPC lipid bilayers. The increase in enthalpy could be a result of the 20 mol% coumarin interactions with DMPG lipid bilayers or a possible generated partial interdigitation. From the Raman results, the peak height Raman intensity ratio I1090/I1130 showed that coumarin induces disorder in the DMPG bilayers in the gel phase due to the increasing gauche:trans ratio. According to the results obtained by DSC and Raman spectroscopy, it was found that coumarin has a varied effect on membranes made from lipids with choline and glycerol head groups. Thus, it is obvious that the polyphenol/membrane interactions can be significantly impacted by the lipids’ structural variations.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.